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The applicability of explicit state model checking is restricted by the state space

explosion problem which makes the veri�cation of large scale models infeasible. An

approach to mitigate state space explosion, is to scale up and bene�t from today's

multi-core computers. According to Gunther's universal scalability law, scalability is

constrained by contention and coherence. For breadth-�rst model checking with TLC,

contention is already minimal. Consequently, we analyze the e�ects of coherence on

TLC's scalability and present a lock-free hash-table algorithm for a model checker's set

of seen states. Contrary to most hash-table algorithms present in model checkers, ours

is not memory bound. It can be extended to disk. We verify the correctness of our

algorithm with TLC.

We provide a production-ready implementation of the algorithm in Java for which we

demonstrate and quantify superior performance and scalability over TLC's legacy set

of seen states. We then propose two additional algorithms for the set of unseen states

and the state forest, for which we also include prototypic implementations. When we

combine all our proposed changes into TLC, its scalability then exceeds that of SPIN.

Our work on TLC's scalability also reveals that the popular approach of lock-striping

does not scale. This result is of interest as an argument in favor of lock-free programming,

despite its inherent complexity.



Die Einsetzbarkeit von explizitem Model Checking wird durch das explosionsartige

Anwachsen des Zustandsraums eingeschränkt, wodurch die Gröÿe der prüfbaren Modelle

begrenzt ist. Dem Anwachsen des Zustandsraums lässt sich jedoch mit vertikaler Ska-

lierung auf Multiprozessor-Systemen begegnen. Gunthers universelles Scalability Law,

unterteilt Skalierbarkeit in Contention und Coherence. Die in TLC eingesetzte Breiten-

suche ist in Bezug auf Contention bereits optimal. Daher werden die Auswirkungen von

Coherence auf die Skalierbarkeit von TLC untersucht. Zur Beseitigung der beobachteten

Contention, wird ein nicht-blockierender Hashtable Algorithmus vorgeschlagen, der zur

Speicherung der beim Model Checking bereits besuchten Zustände dient. Dieser Algo-

rithmus kann im Gegensatz zu bereits bekannten Algorithmen die Menge der Zustände

auf die Festplatte auslagern, so dass das Model Chechking nicht durch den verfügbaren

Hauptspeicher begrenzt ist. Die Korrektheit des Algorithmus wurde selbst mit Hilfe von

TLC überprüft.

Die Skalierbarkeit des gezeigten Algorithmus wird anhand einer produktiv nutzbaren

Implementierung empirisch überprüft und die Überlegenheit gegenüber der vorherigen

Lösung demonstriert. Ferner werden zwei weitere Algorithmen mit dazugehörigen Pro-

totypen vorgestellt, mit denen die Menge der noch zu prüfenden Zustände und der State

Forest in Bezug auf Coherence optimiert werden. Sind alle drei Verbesserungen kombi-

niert, übersteigt die Skalierbarkeit von TLC, die Skalierbarkeit von SPIN.

Im Rahmen dieser Arbeit wurde auÿerdem die Erkenntnis gewonnen, dass das Konzept

des Lock-Stripings zur Verbesserung der Skalierbarkeit von blockierenden Algorithmen

nicht skaliert. Dadurch steigt die Bedeutung von nicht-blockierenden Algorithmen, trotz

der damit einhergehenden höheren Komplexität. Diese Komplexität kann aber unter

anderem mit Hilfe von Model Checking beherrscht werden.
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1. Introduction

In 1988, Edsger W. Dijkstra argued that a �programmer's task is not just to write down

a program, but that his main task is to give a formal proof that the program he proposes

meets the equally formal functional speci�cation.� [Dijkstra, 1988]. Unfortunately, since

then formal methods have neither received a wide recognition nor been adopted through-

out the industry. However, today's computer systems are both ubiquitous and pervasive

and thus touch every aspect of life. This fact, combined with a young generation of

technology-literates that embrace computer systems, will force industry to provide bet-

ter systems. To this end, programmers require the training to add formal methods to

their tool-belt and be provided with proper tools to verify programs. Such tools ought to

be capable of verifying programs � despite the state space explosion problem � beyond

the size of toy examples. One well-studied class of such tools are Model Checkers.

1.1. Problem Statement

Moore's law � the doubling of transistors on a chip every 18 months � is predicted

to end eventually. The laws of physics put a limit to ever-increasing transistor density.

This fact has shifted the way computers are built from single to multi-core architec-

tures. Today, even small portable computers such as smart phones are equipped with

multiple cores. This change does not come for free however. The software running on

the hardware has to be rewritten in order to bene�t from multi-core architectures. This

is a non-trivial task because parallel algorithms have to be devised that exhibit mini-

mal coherence and contention among their concurrently executing parts. Otherwise, it

is possible that a program will run more slowly on multiple cores than its sequential

counterpart.

The algorithm used by most model checkers to check safety properties has been shown

to be parallelizable. What remains an open problem is to scale explicit state model check-

ing up to hundreds or more cores. This problem is among the list of challenges, which

Clarke [2008] � the father of model checking � believes to �require major breakthroughs
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in order to become su�ciently practical for widespread use in industry.� Limiting co-

herence and contention is the key area to make parallelization e�cient. While high

core counts still do not solve the state space explosion problem, they make feasible the

veri�cation of larger, previously intractable models.

Additionally, scaling a model checker vertically on multi-core architectures paves the

road for distributed explicit state model checking, thus scaling horizontally where con-

tention and coherence are even more limiting.

1.2. Reading Guide

Chapter 2 introduces basic concepts required to understand the later chapters of this

thesis. It starts with de�nitions relevant in the context of explicit state model checking.

It then outlines TLA+ and TLC and discusses parallel model checking.

The concepts found in chapter 3 represent the fundamentals outside the scope of model

checking. In particular, 3.1 introduces concepts of concurrent systems, such as locks and

lock-freedom. Afterwards, the mathematics to quantify the scalability of concurrent

system is explained. It concludes with the theory of hash tables and thoughts relevant

to sorting. A reader with existing knowledge of these topics may wish to skip to the

following chapter.

Chapter 4 identi�es the shortcomings in TLC that hinder scalability. This is followed

by chapter 5, which list the requirements for the new algorithm and the implementation

presented as part of this thesis. The chapter 6 outlines the contributions made by other

authors to explicit state model checkers that are relevant for this thesis. The three

chapters follow the same structure, such that the discussion �rst focuses on the level of

a model checker to then move the focus to the seen set C (hash table) speci�cally.

In chapter 7, we present the new algorithm and discuss its speci�cation. Its imple-

mentation is introduced in detail in chapter 8. The performance and scalability of the

implementation is studied empirically in chapter 9.

Chapter 10 summarizes the work carried out as part of this thesis. Finally, chapter 11

ends with an outline of future work.

The appendix, besides the acknowledgement, an index, the glossary, acronyms and

bibliography, contains a copy of the TLA+ speci�cations discussed throughout this thesis.

It also introduces the subset of the TLA+ and PlusCal language constructs, which appear

in this thesis. A reader unfamiliar with either TLA+ and PlusCal, may want to bookmark

the reference on page 117.
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1.3. About this Thesis

The author wrote this thesis in his capacity as a Microsoft Research employee and

member of the TLA+ project. The thesis is not a project of the Theoretical Foundations

of Computer Science (TGI) research group at the University of Hamburg.

The work carried out as part of this thesis was embedded in e�orts to push the envelope

of explicit state model checking with TLC. The author's other ongoing research work in

this area � together with his colleagues of the TLA+ project � includes:

� Distributed TLC

� Cloud Distributed TLC

� Checking liveness properties under symmetry

� Concurrent Search for Strongly Connected Components

Distributed TLC scales explicit state model checking horizontally across multiple nodes

of a network of computers. Cloud distributed TLC � an extension to distributed TLC

� allows users of TLC to tap into the compute power provided by cloud computing

while hiding the idiosyncrasies of the distributed system.

Checking liveness properties under symmetry [compare Emerson and Sistla, 1996] is

about exploiting symmetries � corresponding to the group of the state graph auto-

morphisms � to reduce the number of states that have to be checked during liveness

checking. Also relevant to liveness checking, is the scalability of the search for strongly

connected components. The canonical algorithm invented by Tarjan [1972] is sequential,

which severely limits the scalability of liveness checking with TLC.
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2. Background

This chapter introduces the theoretical foundations for (explicit state) model checking.

This is followed by section 2.2, which puts the focus on the Temporal Logic of Ac-

tions (TLA+) speci�cation language and its companion tools. Most importantly, the

TLA Checker (TLC) � one of the companion tools � will be introduced from a user

and an algorithmic perspective.

2.1. Model Checking

A model checker is a tool that aids in the veri�cation of the system being modeled. A

user speci�es the system, such as a computer program or an algorithm, and asks the

model checker if the given speci�cation adheres to a set of desired properties. Where

validation such as testing shows the presence of errors, model checking proves the absence

of errors. It therefor provides a higher assurance then testing.

2.1.1. States and Behaviors

Lamport [2008] discusses various ways to represent the possible executions of concurrent

or distributed systems. Among which, Lamport suggests to describe a single execution

as a sequence of states that the system possibly assumes. A state is de�ned to be the

assignment of values to a �nite set of variables. The set of all states is the system's state

space, which is usually denoted by S . To describe executions of continuously running

systems, the sequence of states is in�nite. A terminating execution is represented by

an in�nite sequence, of which the last state repeats inde�nitely. Lamport [1994] calls

an in�nite sequence of states a behavior. The meaning of the system is the set of all

behaviors. The set of behaviors is typically denoted by Σ.

Throughout section 2.1, we will explore the concepts with the help of the example

system ω. The system ω writes a value from the set {a, b} to the variable x and a value

from the set {0, 1, 2} to the variable y . However, the system is only allowed to �ip the
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value of x and set y = 0 if and only if (i�) y = 1. Listing 2.1.1 shows the system's state

space Sω and its initial states Iω with Iω ⊆ Sω.

Sω = {(x = a ∧ y = 0) , (x = b ∧ y = 0) , (x = a ∧ y = 1) ,

(x = b ∧ y = 1) , (x = a ∧ y = 2) , (x = b ∧ y = 2)}

Iω = {(x = a ∧ y = 0) , (x = b ∧ y = 0)}

(2.1.1)

2.1.2. Transition System and State Graph

The set of behaviors Σ is often represented with a transition system T , which we loosely

de�ne to be the triple {S , I ,→}:

� S , the �nite set of all states

� I , a set of initial states with I ⊆ S

� → denotes a left-total1 next state relation

Note however, that it is possible to represent the transition system with other concepts

such as a Petri Net [compare Peterson, 1981].

A possible next state relation for ω, consisting of a disjunct of the two possible transi-

tions, is shown in 2.1.2. It uses the notation of primed variables to refer to the successor

state of the current state.

→ω,

(y = 1 ∧ y ′ = 0 ∧ x ′ ∈ {a, b})

∨ (y ′ ∈ {1, 2, 3} ∧ x ′ = x ) (2.1.2)

The transition system is often used to generate a directed graph (digraph) whose nodes

represent (reachable) states V = S and whose arcs represent transitions E = S × S . In

section 2.2.3 and in schematic 2.2.3 we will refer to the transition system as the procedure

to generate the state graph. The digraph is called the state graph. A behavior of the

system corresponds to an in�nite path in the state graph.
1The transition relation → models deadlock states as states whose only (outgoing) transition is a
self-loop.
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/\ x = "a"
/\ y = 0

/\ x = "a"
/\ y = 1

/\ x = "a"
/\ y = 2

/\ x = "b"
/\ y = 0

/\ x = "b"
/\ y = 1

/\ x = "b"
/\ y = 2

Figure 2.1.1.: The state graph of the ω system

An example state graph is illustrated in �gure 2.1.1 for the concurrent system ω

introduced above. The initial states are denoted by a gray background.

2.1.3. Safety and Liveness Properties

A system has various properties, such as performance properties, energy e�ciency, or

security properties. For example, chapter 9 studies performance and scalability prop-

erties of a lock-free algorithm. In the scope of this section however, we will focus on

behavioral properties of a system. A (behavioral) property is a set Π of behaviors. Under

this de�nition, showing that a system � described by its set Σ of behaviors � satis�es

a property amounts to showing that all its behaviors are in Π, hence Σ ⊆ Π. This is

the task of the class of explicit state model checkers, which we consider in this thesis

(section 2.1.8 gives an overview of other classes).

One of the contributions of Alpern and Schneider [1984] is, that any (behavioral)

property is the intersection of a safety and a liveness property. Lamport [1977] was

the �rst to informally de�ne safety and liveness, such that a safety property asserts

that something bad never happens. A liveness property on the other hand asserts that

something good eventually happens.

Goo [1985], Alpern and Schneider [1984] provide a formal de�nition of safety. An

(in�nite) behavior satis�es a safety property, if and only if its �nite pre�xes satisfy the

property. In other words, a pre�x of a behavior, that violates a safety property, can not

be extended to an (in�nite) behavior; the bad thing has already occurred and cannot

be remedied. Alpern and Schneider [1984] de�ne a liveness property to be one s.t. every

�nite pre�x of a behavior can be extended to an in�nite behavior which satis�es the

property. In other words, a liveness property allows a pre�x of a behavior, not yet

satisfying the liveness property, to be extended to satisfy it; something good can still

happen later. Thus, in order for a model checker to verify safety properties, it su�ces

to look at the �nite pre�xes of behaviors, whereas the veri�cation of liveness properties

7



requires to check (in�nite) behaviors.

With regards to the example system ω above, an example of a safety property is one

that excludes states where x = b ∧ y = 2. All behaviors whose corresponding path

visits the state with x = b ∧ y = 2 violate this safety property. For example, the pre�x

〈x = b ∧ y = 0→ x = b ∧ y = 2〉 of a behavior violates the safety property. Conversely,
an example of a liveness property is one, that mandates that x = a eventually leads to

x = b. All behaviors, whose corresponding path never visits a state with y = b after it

visited a state with y = a, violate this liveness property.

In a formalism to reason about systems, a property is a predicate on behaviors. Pnueli

[1977] proposes to formally represent a property as a temporal logic formula. The ob-

servation however, that describing systems as lists of temporal formula is impractical,

stirred Lamport [1994] to propose the Temporal Logic of Actions (TLA) language in

turn. In TLA, the system is described by a speci�cation Γ, which � in correspondence

with Alpern and Schneider [1984] � is a conjunct of a safety property ψsafe and liveness

property ψlive , hence Γ = ψsafe ∧ ψlive , where ψsafe is described by a transition system.

Showing that a system has (any) property φ, requires to validate Γ⇒ φ.

2.1.4. Model Checking Problem

The section 2.1.3 concludes, that in order to show that a speci�cation Γ of a system has

a property φ, an explicit state model checker has to verify Γ ⇒ φ, which is equivalent

to ψsafe ∧ψlive ⇒ φ. We de�ne this to be the task of an explicit state model checker and

call it the model checking problem.

A model checker can only verify speci�cations with a �nite state space.2 The user

must de�ne a model that constrains a speci�cation with an in�nite state space to a

�nite one. In order to verify in�nite speci�cations, one uses a theorem prover (compare

section 2.2.2).

If a violation of the property φ is detected, the model checker searches for a behavior

(or a pre�x of a behavior) that is a counterexample. A counterexample is de�ned to be

a behavior that satis�es ¬φ. It is obviously desirable to �nd a short � preferably the

shortest possible � behavior that is a counterexample. A counterexample to a safety

property is a �nite pre�x of a behavior, whereas it is an in�nite (lasso shaped) behavior

to a liveness property. With regards to the example ω, a counterexample to the example

of a liveness property demanding that x = a leads to x = b, is depicted in �gure 2.1.2.

2We deliberately crafted the speci�cation of the ω system to be a �nite one.
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/\ x = b
/\ y = 0

/\ x = b
/\ y = 1

/\ x = a
/\ y = 0

/\ x = a
/\ y = 1

Figure 2.1.2.: A counterexample of the ω system to the liveness property x = a leads to
x = b

In the counterexample in �gure 2.1.2, states with x = a follow states with x = b, but

not vice versa. Note, that this is not the shortest counterexample.

Abadi and Lamport [1991] prove, that if the speci�cation Γ is machine closed and the

property φ is a safety property, checking validity can be reduced to checking ψsafe ⇒ φ.

Informally, a machine closed speci�cation guarantees that the liveness property ψlive is

free of any additional safety properties not already stated by ψsafe [compare Apt et al.,

1987]. It is important for a speci�cation to be machine closed for it to remain imple-

mentable. A machine closed speci�cation is required to prevent a system from �painting

itself into a corner � [Apt et al., 1987]. A system, executing an implementation of a

non machine closed speci�cation, would require a look-ahead to exclude those execu-

tions, from which no allowed behavior can be continued [see Henzinger, 1992]. As stated

in Yu et al. [1999], the TLC model checker (see section 2.2.3) implicitly assumes the

speci�cation to be machine closed.

In order for a model checker to verify ψsafe ⇒ φ when Γ is machine closed and φ is

a safety property, it su�ces to check �nite pre�xes of behaviors [Lamport, 1977]. This

result is important, because the algorithm limited to checking �nite pre�xes � which

can be described as a reachability analysis on the on-the-�y generated state graph �

is computationally less expensive compared to the algorithm to check liveness proper-

ties. Thus, TLC checks safety properties with BFS, which reduces model checking time

considerably (see section 2.2.3).

2.1.5. Complexity of Explicit State Model Checking

The asymptotic complexity of the model checking problem for several temporal logics

is analyzed in Sistla and Clarke [1985]. The authors show that for an Linear-Time

Temporal Logic (LTL) logic fragment restricted to future operators � thus comparable

toTLA� satis�ability is PSPACE−complete. The complexity of the decision procedure

for the model checking problem � given by O
(
|G(KT )| · 2sym(φ)

)
� consists of the size

of the state graph G (KT ) = |E |+|V | (compare section 2.1.1) and the number of symbols

sym (φ) appearing in the formula φ. The LTL model checking algorithm in Lichtenstein
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N N = {1, 2, 3} N = {1, 2, 3, 4}
1 23 29
2 6189 15362
3 4558640 >10649063a

aWe manually terminated TLC after a few minutes with a queue of unexplored states of size 4169818.

Table 2.1.: Number of (distinct) states of the Bakery algorithm with N modeling the
number of processes and two de�nition overrides for the set of all natural
numbers N

and Pnueli [1985] is proven to be exponential in sym (φ), but linear in the size of G .

In other words, assuming that the property φ is relatively short, explicit state model

checking remains feasible.

2.1.6. State Space Explosion Problem

The previous section 2.1.5 concluded, that the decision problem is linear in the size of

the state graph G . However, one of the main challenges of explicit state model checking,

is a combinatorial explosion called state space explosion [see Clarke et al., 2012]. The

state space explosion is an exponential blowup of the state space corresponding to linear

growth in the number of variables V and their domain returned by dom � the possible

values of each v ∈ V � in the speci�cation. All but the most trivial speci�cations face

state space explosion. For a speci�cation with n = |V|, the upper bound for the number

of possible states is
n∏
i=1

dom (vi). In the special case that ∀v ∈ V : dom (v) = k , the

upper bound is kn . Table 2.1 illustrates state space explosion with Lamport's Bakery

algorithm [compare Lamport, 1974] as speci�ed in Lamport [2015a].

Opponents of explicit state model checking will argue that � due to the two previously

identi�ed exponential growth rates � this approach is an uphill battle. Several success

stories on earth [Newcombe et al., 2015, Joshi et al., 2003] and even the planet Mars

[Holzmann, 2014] show, that explicit state model checking has its place in both academia

and industry nonetheless. Much of its success is owed to advances in combating state

space explosion.

2.1.7. Parallelizing Model Checking

Computing problems range from inherently sequential to embarrassingly parallel prob-

lems [Herlihy and Shavit, 2012]. A problem that is said to be inherently sequential,

10



gains no speedup from parallelization. Conversely, an embarrassingly parallel problem

gains ideal speedup from parallelization. An embarrassingly parallel problem incurs no

contention or coherence (see 3.2), whereas an inherently sequential problem is de�ned

to have a maximum contention factor preventing any form of parallelization.

Section 2.1.5 notes that explicit state model checking of LTL formulas of arbitrary

length is in PSPACE . In practice however, formulas are usually su�ciently short to

regard them as �xed sized formulas. Under this assumption, Filippidis and Holzmann

[2014, section 8.] show that explicit state model checking � generalized to directed

graph reachability � is in NL; the problems decidable in nondeterministic logarithmic

time. The authors further give the relationship of NL ⊆ NC ⊆ P ⊆ PSPACE . Nick's

class (NC ) is de�ned to be the set of problems decidable in polylogarithmic time [see

Papadimitriou, 1994]. In other words, problems which are not inherently sequential and

instead can be e�ciently solved with parallelization. Yet they are neither embarrassingly

parallel. Note however that Reif [1985] proved depth-�rst search (DFS) to be P −
complete. Thus, DFS is inherently sequential.

The previous paragraph con�rms that parallelizing a model checker will result in sat-

isfactory reductions of model checking time. This result justi�es the attempt to improve

the actual breath-�rst search (BFS) algorithm and the e�ciency of the underlying im-

plementation.

2.1.8. Methods, Speci�cation Languages and Tools

The model checking community proposed a plethora of speci�cation languages and tools

to formally de�ne and verify systems, that would warrant a thesis of its own. An

introductory overview beyond this paragraph is provided in Frappier et al. [2010].

For the camp of explicit state model checkers, the speci�cation language Promela

and the accompanied model checker Spin [Holzmann, 2005] are prominent represen-

tatives for which the author even received the ACM System Software Award in 2001

[Holzmann, 2001]. Other explicit state model checkers � which receive active research

� are, among others, DiVinE [Barnat et al., 2013], jpf [Havelund and Pressburger,

2000] and LTSMin [Kant et al., 2015]. Where Promela has only limited support to

verify implementation code, DiVinE veri�es code written in implementation languages

such as C and C++. Similarly, jpf can verify Java (byte) code. Generally, veri�cation

at the implementation language is geared towards �ne grained speci�cations, whereas

dedicated languages are usually meant for high-level speci�cations. A language indepen-

dent model checker is LTSMin, which accepts speci�cation written in process algebras,
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implementation languages and timed automata. Through the use of pnml2pins [Meijer,

2015], it is possible to verify (unfolded) Petri nets with LTSMin [compare McMillan and

Probst, 1995]. This allowed LTSMin to participate and win the LTL formulas category

in the Model Checking Contest (MCC) in 2016 [see Kordon et al., 2016].

Additionally, LTSMin supports symbolic model checking, which is an alternative

method to explicit state model checking. Symbolic model checking combats the state

space explosion problem by representing sets of states as (boolean) formulas [see McMil-

lan, 1993]. Symbolic model checking exploits regularities in the state space to achieve a

more succinct encoding of states. Given there are regularities, symbolic model checking

can verify models an order of magnitude larger than those veri�able by an explicit state

model checker. NuSMV is another noteworthy symbolic model checker. Its speci�ca-

tions are written in the SMV description language [Cimatti et al., 2002].

Verifying systems that exhibit stochastic behavior is the provenance of probabilistic

model checking. Here, transitions are assigned probabilities. This makes probabilistic

model checking amendable to model and verify not just computer, but also biological

systems. In addition to the decision problem described above in 2.1.3, probabilistic model

checking answers queries such as �the property ϕ holds 95% of the time�. A prominent

probabilistic model checker is Prism [Kwiatkowska et al., 2011] whose speci�cation

language is based on the reactive modules formalism [see Alur and Henzinger, 1999].

Oldenkamp [2007] presents a comparative study of probabilistic model checkers.

The most exhaustive listing of model checking tools on the web appears to be on

Wikipedia [2017a]. The annually held MCC and the comparisons done with the BEEM

database of models [see Pelánek, 2007] are other sources to �nd model checkers.

2.2. TLA+

This section builds up on TLA and introduces the TLA+ speci�cation language. Section

2.1.8 additionally provided an overview on the methods and tools prevalent in the model

checking community. In the scope of TLA+, the TLC model checker is the canonical

tool used to verify TLA+ speci�cations. The section 2.2.3 below assumes a user centric

view on TLC and maps this view and an algorithmic perspective of TLC to the formal

foundation in the previous section 2.1.
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2.2.1. TLA+ Speci�cation Language

TLA+ is a formal speci�cation language based on TLA. TLA+ is not limited to, but is

primarily used to write high-level speci�cations of concurrent and distributed systems.

TLA+ di�ers from typical speci�cation languages, which are usually inspired by pro-

gramming languages. Instead, TLA+ favors expressiveness by the use of mathematical

abstraction to aim for compact speci�cations. As such, TLA+ is built on set theory,

�rst-order and temporal logic. TLA+ is an action based language where an action is a

�rst-order formula on primed and unprimed variables. The language is untyped. Con-

cerns, like the program e�ciency, are outside its scope. Lamport et al. [2002] go into

more detail on this topic. TLA+ has been applied to a broad spectrum of problems,

ranging from hardware protocols (see Joshi et al., 2003) to distributed algorithms run-

ning today's data-centers [Newcombe et al., 2015]. It is actively used in industry and

academia alike (e.g. Lu et al., 2011).

Lamport [2006, 2009] introduced PlusCal as an algorithm language to replace informal

pseudo-code. A PlusCal expression can be any TLA+ expression. It is thus equally ex-

pressive as TLA+ but � due to its resemblances of traditional programming languages

� the gateway to TLA+ for engineers. The TLA Toolbox (see 2.2.2 below) automat-

ically transpiles PlusCal to TLA+, but not vice versa. The canonical introductions to

TLA+ and PlusCal are found in Lamport [1994, 2003, 2009, 2014]. As of late, the �rst

episodes of a multi-volume video course on TLA+, primarily targeting programmers and

engineers, have become available too [Lamport, 2017]. More episodes are expected to

appear later.

2.2.2. TLA Toolbox

The TLA Toolbox is the o�cial integrated development environment for TLA+. It is

based on Eclipse and provides support for writing TLA+ and PlusCal speci�cations (see

�gure 2.2.1a). Additionally, it has a graphical user interface to con�gure and tune TLC's

input parameters (�gure 2.2.1b). TLC can be launched locally or remotely (compare

Kuppe, 2014) from within the TLA Toolbox. The TLA Toolbox supports launching

both the parallel and the distributed mode of TLC.

Model checking results are visualized and counterexamples can be inspected with the

Error-Trace. The Error-Trace allows one to evaluate arbitrary state predicates and

action predicates on a counterexample (�gure 2.2.2a and �gure 2.2.2b).

Besides the model checker, the TLA Toolbox also integrates the TLA+ proof sys-
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Figure 2.2.3.: Schematic of the TLC model checker.

tem (TLAPS) [Chaudhuri et al., 2010]. TLAPS can mechanically check proofs written

in TLA+ and thus supports the veri�cation of in�nite speci�cations. TLAPS proofs are

structured hierarchically [Lamport, 1995]. TLAPS can be described to be a front-end

theorem prover, which uses various existing theorem provers as back-ends. As of now,

TLAPS is limited to reasoning about safety properties.

2.2.3. TLC Model Checker

TLC is an explicit state model checker originally written by Yu et al. [1999] to verify

TLA+ speci�cations. TLC can check a subset of TLA+ that is commonly needed to

describe real-world systems, most notably �nite systems.

The schematic �gure 2.2.3 is a simpli�ed view on TLC. A user of TLC, provides TLC

with a speci�cation and one to n models. The speci�cation � written as a temporal

formula (see section 2.1.4) � speci�es the system; such as the Bakery mutual exclusion

algorithm (Lamport, 1974). Conceptualized, the speci�cation can be seen as the de�ni-

tion of the system's set of behaviors Σ. A model on the other hand, declares the set of

properties Φ, that the system is expected to satisfy. In case of the Bakery algorithm,

a user may wish to verify the safety property, that no two processes are in the critical

section simultaneously. Also, the model declares additional input parameters, such as

(system) constants and TLC runtime options. The parameters shall not concern us

here.
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With regards to checking safety properties, TLC consists of a generator procedure to

create the state graph G (T ), which we called the transition system in section 2.1. First,

the procedure generates the speci�cation's initial states I . Afterwards, given a state and

the speci�cation's actions, TLC enumerates all possible successor- or next-states (see

→ in section 2.1). Simpli�ed, each successor state s is fed to the second procedure. The

second procedure checks, if the state satis�es the model's safety properties Φ.3 If a state

is found to violate a property, a counterexample is constructed.

The �rst procedure generates the state graph on-the-�y by running BFS.4 Conse-

quently, it maintains two sets of states:

� The unseen set S to store newly generated, still unexplored states. A term syn-

onymously used for S in the context of TLC is state queue.

� The seen set C to store explored states. TLC calls C the �ngerprint set motivated

by the fact that C stores state hashes rather than states (more on that later).

Contrary to regular BFS, TLC maintains a third data structure to construct a coun-

terexample:

� A (state) forest T of rooted in-trees to construct the shortest path from any state

sn ∈ S back to an initial state so ∈ I . The states in I correspond to the roots in

T .

The PlusCal pseudo-code in algorithm 1 shows a simpli�ed variant of TLC's algorithm

to check safety properties (full listing in section B.1). Readers, unfamiliar with TLA+

or PlusCal, are referred to the reference list in appendix A on page 117 for a brief intro-

duction of the language constructs. First, TLC generates the initial states atomically

and adds them to the set of unseen states S . The init loop checks each initial state

for a violation. If the state does not violate the properties, it is added to C (algorithm

1 line 6 to line 13). The second scsr loop executes BFS (algorithm 1 line 14 to line

30). The SuccessorsOf operation corresponds to the next state relation (see → in sec-

tion 2.1). The succ ∈ ViolationStates check represents the procedure to verify the safety

properties ΦS .

TLC naïvely parallelizes BFS by concurrently executing the while loop scsr with

multiple threads � called workers. The global data structures S ,C ,T are shared by all

workers.5 Consequently, each data structure has to be guarded by locks to guarantee
3Liveness properties are checked on behaviors instead of states.
4TLC also supports to run DFS.
5The actual implementation keeps the two global PlusCal variables state and successors thread-local.
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Algorithm 1 : TLC's algorithm to check safety properties
1 --algorithm ModelChecker{
2 variables

3 S ∈ SetOfAllPermutationsOfInitials(StateGraph),
4 C = {}, state = null , successors = {},
5 i = 1, counterexample = 〈〉, T = 〈〉 ; {

6 init : while (i ≤ Len(S )){
7 state := Head(S ) ;
8 C := C ∪ {state} ;
9 i := i + 1 ;

10 if (state ∈ ViolationStates){
11 counterexample := 〈state〉 ; goto trc ;
12 } ;
13 } ;

14 scsr : while (Len(S ) 6= 0){
15 state := Head(S ) ; S := Tail(S ) ;

16 successors := SuccessorsOf (state, StateGraph, C ) ;
17 if (successors = {state}){
18 counterexample := 〈null〉 ; goto trc ;
19 } ;
20 each : while (successors 6= {}){
21 with (succ ∈ successors){
22 successors := successors \ {succ} ;
23 C := C ∪ {succ} ; S := S ◦ 〈succ〉 ;
24 T := T ◦ 〈〈state, succ〉〉 ;
25 if (succ ∈ ViolationStates){
26 counterexample := 〈succ〉 ; goto trc ;
27 } ;
28 } ;
29 } ;
30 } ;
31 goto Done ;

32 trc : while (true){
33 if (Head(counterexample) /∈ StateGraph.initials){
34 counterexample :=
35 〈Predecessor(T , Head(counterexample))〉 ◦ counterexample ;
36 }else {
37 goto Done ;
38 } ;
39 } ;
40 }
41 }
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consistency. Sharing S among all workers achieves optimal load-balancing. We call

this mode of execution parallel TLC. TLC can also execute on a network of computers

in what is called distributed mode [Kuppe, 2012]. Distributed TLC speeds up model

checking.

TLC is implemented in and available on all operating systems supported by Java.

TLC runs on commodity hardware found in desktop computers, up to high-end servers

equipped with hundreds of cores and terabytes of memory. It is capable of checking

large-scale models, i.e. the maximum checkable size of a model is not bound to the

available memory. Instead, TLC keeps the in-memory working set small:

1. TLC swaps unexplored states in the unseen set S from memory to disk. The

unseen set S has a �xed space requirement.

2. TLC constantly �ushes the forest to disk. I� a violation is found, TLC reads the

forest back to disk to construct the counterexample.

3. The seen set C � whenever it exceeds its allocated memory � extends to disk.

1 and 2 enable TLC to allocate the majority of memory to the seen set C . When

the seen set C exceeds its allocated memory (3), TLC is said to run disk-based model

checking. Once TLC switches to disk-based model checking, its performance, i.e. the

number of states generated per unit of time, drops signi�cantly. Still, disk-based model

checking has its place. It makes the veri�cation of state space tractable, for which the

primary memory alone is insu�cient, e.g. Newcombe [2014] gives an account where TLC

ran for several weeks to check a state space of approximately 234 states.

TLC supports the use of TLC module overwrites in TLA+ and PlusCal speci�cations.

A TLCmodule overwrite is a static Javamethod which matches the signature of aTLA+

operator.6 With a TLC module overwrite in place, TLC delegates the evaluation of the

corresponding TLA+ operator to the Java method. Generally, this is assumed to be

faster. A TLC module overwrite is stateless and cannot access its context. Additionally,

TLC module overwrites make the Java library available to TLA+ users. Later, in

section 7.3 and section 8.4 we will return to TLC module overwrites.

6TLC uses TLC module overwrites for most of the built-in operators in the standard modules.
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3. Fundamentals

In alignment with the thesis' title, the previous chapter 2 covered explicit state model

checking and set the stage for the work discussed in later chapters. This chapter in-

troduces the generic material beyond explicit state model checking, which is needed by

later chapters.

In the upcoming section 3.1, we detour from model checkers and discuss generic con-

current systems and relevant synchronization mechanisms to deal with concurrency.

Later chapters build up on the synchronization mechanism. In section 3.2, this chapter

also introduces the mathematics to quantify the scalability of concurrent systems. The

section 3.3 will discuss the use of hash tables in the scope of explicit state model check-

ing. Finally, section 3.4 lays out the fundamentals of sorting, which are relevant in later

chapters.

3.1. Concurrent System

A concurrent system � such as a distributed, a multi-processor, or multi-core system1

� is a set of processes. A task is a unit of work, consisting of n operations, which are

sequentially carried out by an individual process. Collectively, the processes work on

achieving a common goal, which is the combined result of the set of tasks. In short, a

concurrent system executes multiple tasks at the same time. The processes communicate

via shared or distributed memory.

Consequently, a concurrent system allows two (or more) operations a and b to happen

concurrently. If these two operations are neither con�ict-free, nor disjoint access parallel

[compare Israeli and Rappoport, 1994], s.t. the operations manipulate the same regions

of shared memory, the operations have to be ordered. Otherwise, it is easy to see that

the concurrent system will eventually assume an inconsistent state, e.g. when multiple

concurrent processes read and write the same set of variables non-atomically.

1We will not concern ourselves with di�erences of multi-processor and multi-core architectures.
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Figure 3.1.1.: Computer memory hierarchy [inspired by Wikipedia, 2017b]

Current processor generations provide weak or relaxed consistency models to achieve

a higher level of concurrency and ultimately better performance [Gharachorloo et al.,

1991]. Those consistency models accept optimization such as reordering of operations

or speculative execution [compare Adve and Gharachorloo, 1996].

Besides optimization at the operation level, current hardware implements the Non

Uniform Memory Access (NUMA) architecture, where several layers of caches are placed

in-between the processor and primary memory (see 3.1.1). Each cache layer (L1 to L3)

� with increasing processor proximity � provides several orders of magnitude faster

access times. On the other hand, a cache layer in close processor proximity is of smaller

size compared to far distanced caches.2 Data or memory is fetched from primary memory

into caches in �xed sizes, called cache lines. A cache miss happens, whenever a cache

line has to be fetched from primary memory.

Implementing programs at such a low abstraction level is challenging where memory

modi�cations have to be ordered with (basic) fence instructions.3 A fence makes memory

modi�cations globally visible by copying a cache line back to primary memory and

invalidating copies in foreign caches.

Likewise, reasoning about relaxed consistency models as described above, is di�cult

due to the size of the accompanied state space. In other words, the set of required

2We use the term processor and core interchangeably. Shared Cache (L3) means, that it is shared by
multiple processors.

3The level of concurrency is inversely proportional to the number of fence instructions executed.
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behaviors to describe the concurrent system is signi�cantly larger compared to models

with stronger consistency guarantees.

In contrast, the sequential consistency model � introduced by Lamport [1979] �

de�nes operations to be atomic, s.t. two (con�icting) operations a and b are represented

by a set of two behaviors: One behavior in which a happens before b and one where a

happens after b. This de�nition makes it easier to reason about a concurrent system.

The Java programming language uses the sequential consistency model. It exposes

only a limited set of synchronization primitives, notably the two keywords volatile

and synchronized [Manson et al., 2005]. Both are translated to fence instructions

speci�c to the actual processor architecture. Newer Java releases also include the

java.util.concurrent package. The package supplies the programmer with concur-

rent data structures, high-level locks and atomic primitives for single variables. Access to

Compare and Swap (CAS) is unavailable at the vendor neutral API level but accessible

via sun.misc.Unsafe [compare Frampton et al., 2009, Mastrangelo et al., 2015].

3.1.1. Compare and Swap

The availability of atomic instructions in addition to non-atomic memory reads and

writes, makes programming concurrent systems possible. CAS is an atomic instruction

provided by the hardware layer. CAS writes the (word-sized) value vnew to a memory

location m i� the current value vc of m equals an expected value ve where ve is an

expected value. If ve#vc the CAS operations returns vc or false depending on the

actual implementation.4 CAS can be further re�ned to:

DWCAS Double word CAS of two adjacent/contiguous word-sized memory locations.

DCAS Double word CAS of two arbitrary word-sized memory locations.

CASN CAS of any number of arbitrary memory locations. CASN is also called MCAS.

Only DWCAS is supported by current processor generations (see i.e. CMPXCHG16B

instruction on the x86 architecture). However, within this thesis we are further restricted

to Java's limited support for basic CAS. In the absence of hardware support, CASN

� as shown by Harris et al. [2002] � can be implemented in software. Fraser and

Harris [2007] too provide CASN. However, the performance provided by these solutions

is unsatisfactory for practical purposes.

4In Java sun.misc.Unsafe returns true or false.
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Herlihy [1991] shows, that the CAS instruction has a universal consensus number and

can thus solve the consensus problem [see Fischer et al., 1985] for an unbound number

of processes. It is therefor a universally applicable synchronization primitive and �ts the

sequential consistency model.

Generally, a CAS instruction takes signi�cantly more CPU cycles to execute, com-

pared to a non-atomic write [see Schweizer et al., 2015]. Thus, in cases where a group of

writes has to occur, a lock based approach is likely to be the more applicable synchro-

nization mechanism.

3.1.2. Locks

Locks are the de facto synchronization mechanisms to achieve mutual exclusion in con-

current systems. A lock blocks all other processes � waiting for the same lock � from

making forward progress. For performance reasons, modern lock implementations follow

a two-phased strategy: First, a process spins brie�y while trying to acquire the lock. If

the acquisition fails, the process is put to sleep by the scheduler until it can success-

fully acquire the lock later. Two-phase locking can reduce context switching and the

number of cache misses. Context switching, or preemption, can have a degrading e�ect

on concurrency if the system interrupts the process which holds a lock. Note that the

spin-phase is usually implemented with CAS. Highly contended locks thus directly lead

to excessive cache misses and consequently degrade concurrency.

It might be desirable to allow multiple readers to access a resource concurrently, for

all to make forward progress. If a writer however requests exclusive write access, readers

are blocked. This type of lock is called a shared lock.

If possible, lock-striping � at the application layer � can alleviate the problem of

contended locks. Lock-striping is the concept of employing n locks to guard a data

structure, separated into n disjunct partitions.

Choosing the right level of lock granularity is paramount. Coarse grained locking

limits concurrency whereas �ne grained locking produces signi�cant overhead caused by

lock acquisition and an increased memory footprint.

Unless proven otherwise, locking can result in deadlocks. A deadlock prevents the

concurrent system from making any forward progress at all.
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3.1.3. Lock-Free

The previous sections climbed the abstraction ladder from the lowest-level synchroniza-

tion primitives called fence instructions over atomic instructions like CAS to high-level

lock-based synchronization. This section introduces lock-freedom as an alternative to

locking. Contrary to locking, it does not encapsulate the CAS synchronization primi-

tive into a high-level synchronization mechanism, but instead is a programming pattern

which directly uses CAS.

Formally, lock-freedom is the property, that no process in a concurrent system can

block other processes from making forward progress. Herlihy and Shavit [2012] de�ne a

method as lock-free: �[...] if it guarantees that in�nitely often some thread calling this

method �nishes in a �nite number of steps.�. In this sense, lock-freedom is a stricter

property of a concurrent system compared to locking, because it gives a guarantee of

overall forward progress. It is however possible for individual processes to be starved

inde�nitely (no fairness). From the perspective of concurrency, lock-freedom is robust

against unfavorable process preemption. Lock-freedom can be regarded as nonblocking

optimistic locking.

Algorithm 2 outlines a while-loop which reads a value expected from memory, exe-

cutes � a potentially expensive � someComputation based on expected and attempts

to atomically replace its result with expected using CAS. I� result = false, another at-

tempt is made which involves the re-execution of someComputation because the value

of expected is known to have changed.

Algorithm 2 : Lock-free programming pattern
1 loop : while (true){
2 expected := memory [index ] ;
3 cas : CAS (result , memory [index ], expected , someComputation(expected)) ;
4 if (result){
5 goto done
6 } ;
7 } ;
8 done : . . .

A lock-free algorithm is generally regarded as more complex and thus more di�cult

to reason about than a lock-based counterpart. This stems from the fact, that it allows

for a larger number of behaviors. This generally justi�es a formal veri�cation of the

(high-level) algorithm and � due to the variety of memory models found in hardware
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� a likewise veri�cation of (core parts of) the implementation.

In contrast to locks, the advantage of lock-freedom - implemented with atomic in-

structions such as CAS - is that it can yield better performance and scalability. Tsigas

and Zhang [2002] compare the e�ects of lock-freedom for seven applications. Four out

of seven applications show signi�cant speedups when their implementation uses lock-

freedom. The remaining three applications exhibit no change in performance compared

to the lock-based variants. Morrison, 2016 � on the other hand � shows for lock-

free Michael and Scott queues [compare Michael and Scott, 1996] inferior performance.

The underlying reason is a higher number of failed CAS operations. For Java's syn-

chronization primitives, Thompson [2013] suggests that lock-freedom achieves higher

performance in speci�c scenarios. In summary, lock-freedom is only warranted in the

scope of well de�ned problems. Quantifying the expected performance gain achieved by

applying lock-free programming appears di�cult a-priori. The publications mentioned

above all rely on empirical performance analysis. Thus, the next section introduces the

math required to empirically examine the algorithm in chapter 9 proposed by this thesis

in chapter 7.

3.2. Scalability

The lack of a rigorous de�nition of scalability stirred Hill [1990] to write that �[...] calling

a system "scalable" is about as useful as calling it "modern".� While everybody has an

intuitive understanding of what scalability means, the term remains ambiguous.

Informally, a scalable (concurrent) system is capable of �nishing a larger amount of

tasks within a �xed time interval when its computing resources are increased. Applied

to explicit state model checking, a model checker can be called scalable if it can verify

a larger number of states5 on more powerful hardware within the same length of time.

Gunther [2007] provides a formal de�nition of scalability: the Universal Scalability

Law (USL). Gunther describes scalability by the following function, which relates the

relative capacity or speedup Z , to the number of processes N of a concurrent system:6

Z (N ) =
N

1 + ς (N − 1) + κN (N − 1)
(3.2.1)

5As shown in 2.1.5, the size of Φ - the properties to be checked - is an alternative dimension to the
number of states.

6Gunther denotes the relative capacity with C (N ). We substitute Z (N ) for C (N ) to make it distin-
guishable from the seen set C . Likewise, we substitute σ for ς. We adopted the structure of this
section from Möding [2016a].
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The three terms in the denominator of equation (3.2.1) represent concurrency, con-

tention, and coherence respectively:

Concurrency The �rst term represents optimal concurrency in a concurrent system. It

is thus independent of N . An embarrassingly parallel problem exhibits neither

coherence nor contention, and thus scales linearly. A model checker running BFS

on the other hand, cannot exhibit optimal concurrency; it exhibits contention and

coherence.

Contention (ς) The factor ς in the second term quanti�es the inherent serial portion of

the problem, thus an increase in ς leads to a decrease in speedup Z . The contention

of the model checking problem is determined by the explicit state model checking

algorithm (compare section on Model Checking) and the shape of the state graph.

For example, if we consider a speci�cation describing a single behavior, ς = 1

and thus speedup Z = 1 for any N ; the algorithm has to generate the sequence

of states sequentially. Another source is lock contention, which also adds to the

overall contention observed in a model checker.

Coherence (κ) The κ factor in the third term quanti�es coherence; the overhead in-

duced by maintaining a consistent system state. Consistency requires agreement

among N processes, which is why coherence is quadratic in N . In a model checker,

this is e.g. the overhead created by crosstalk of workers to maintain a consistent

unseen set S and seen set C (see subsection TLC Model Checker).

Amdahl [1967] shows, that a linear growth of contention prevents systems from scaling

inde�nitely. The same restriction is modeled by the contention term in the USL. Ad-

ditionally, coherence's quadratic growth in the USL implies, that scalability eventually

even retrogrades. In other words, additional resources cause the system to slow down.

Contrasted to the linear growth of contention, reducing coherence in a concurrent sys-

tem can therefor be the more e�ective optimization strategy. A strong indicator for

coherence at runtime is a high rate of cache misses.

Ideally, a concurrent system displays linear scalability when ς = κ = 0. In this

case, two scalable systems A and B can only di�er in their performance as shown in

�gure 3.2.1a. When systems exhibit contention (ς > 0), a system with lower performance

can exceed a higher performing system at a certain number of processes (Sub�gure 3

3.2.1b). With coherence (κ > 0), throughput eventually retrogrades under increased

process counts (Sub�gure 3 3.2.1c).7

7All charts in this thesis are vsiualized with the USL CRAN package [Möding, 2016b] and R scripts
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Figure 3.2.1.: E�ects of di�erent scalability and performance characteristics of two sys-
tems
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For any real-world concurrent system � such as the TLC model checker � the values

for (the physical e�ects) ς and κ are unknown. Thus, they have to be determined

empirically. The standard method is to measure the system's throughputs X1, . . . ,XN

for varying numbers of processes 1, . . . ,N and to derive the corresponding speedups

Z (N ). A speedup Z (N ) is de�ned to be the increase in throughput XN normalized to

the throughput of a single process X1, thus Z (N ) = XN
X1

. Linear or ideal speedup means

that doubling the number of processes, results in a proportional increase in speedup.

The system has an ideal e�ciency.

Depending on the context, we discuss throughput at the model checker level and at

the level of the seen set C . For the latter, throughput X is given in puts/ms where a put

is de�ned to be an insertion operation into C . For TLC, throughput is de�ned as the

number of states generated and checked per minute.

Combining scalability and the previous section 3.1.2 on locks, it is important to point

out, that a lock exhibits not only contention. Maintaining consistency of a lock's internal

state, also has coherence attached to it.

3.3. Hash Tables

We continue our detour from explicit state model checking, that we set out on with

section 3.1 on concurrent systems, to introduce hash tables next. Later in this section

though (see 3.3.3), we combine hash tables with explicit state model checking; speci�cally

the role of hash tables in TLC.

Hash tables are the data structure of choice, if the use case demands constant (amor-

tized) performance. Mathematically, a hash table t can be represented as a sequence of

elements without duplicates. The elements are from a universe U . Let K be the size or

length of t . The relation K � |U| is assumed to be true.

In order to provide constant times for insertion, deletion and lookup operations, a

deterministic index function determines the position in the sequence, at which an element

is stored in t . An index function, denoted by idx is a surjective-only mapping of each

element in U to a position in t . Moreover, we expect the index function to uniformly

distribute the elements across t and that it can be computable quickly. A good candidate

for an index function � hence a hash table's name � is a hash function. A hash function

has the property, that it maps elements of arbitrary length to a �xed length k . We chose

a hash function with a k , s.t. 2k = K .

[Gunther, 2016a].
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Once the number of elements in t � denoted by n � exceeds K , the pigeonhole

principle tells us, that two or more elements e1, e2 ∈ U have to be assigned to the same

position. This is called a collision. A collision even occurs before n ≥ K , because of

K � |U|: we map a larger universe to a smaller one. Counterintuitively, the probability

for two or more elements to share the same index, s.t. ∃e1, e2 ∈ U : idx (e1) = idx (e2)

is high, even for sparsely populated hash tables. This e�ect has been studied under the

term birthday paradox [see Knight and Bloom, 1973].

The load factor α of a hash table t is de�ned to be α ,
n

K
. Additionally, we will

look at the utilization. Let Kgross be the gross size of a hash table � the e�ective space

required by the hash table data structure � we de�ne the utilization to be util ,
n × k

Kgross

.

In other words, util is a quality measurement of hash tables.

3.3.1. Collision Resolution

Literature lists various collision resolution strategies to deal with (index) collisions. The

two most prominent collision resolution strategies are Separate Chaining (SC) and Open

Addressing (OA). SC handles collisions by chaining colliding elements into a bucket.

Mathematically, a hash table with SC can thus be represented by a sequence of se-

quences. With SC, the index function maps an element to the outer sequence. In other

words, it maps each element to a collision bucket. Therefor, we will subsequently call

the hash function used with SC bucketIdx .

If nested buckets are unordered sets of elements, the lookup complexity degrades to

O (1 + α): In addition to the constant bucket lookup based on bucketIdx , a linear search

of the matching bucket � with load factor α � has to occur. To optimize insertion

time, a bucket is implemented as a linked list. A linked list can grow in constant time

because an insertion is an append to the list's end. However, a linked list is impractical

in memory constrained scenarios due to the extra cost of list pointers. Alternatively,

one can choose to represent buckets with basic arrays. However, an array does not grow

dynamically. This results in degraded performance, when an insert hits a full array.

Other variants of SC, keep buckets constantly sorted with e.g. trees. Such variants

improve lookup performance, but trade insertion for lookup performance and thus are

geared towards use cases where lookups dominate.

Contrary to SC, OA adheres to the single sequence de�nition of a hash table above.

To resolve collisions, OA employs a probing sequence starting at a primary index, up to

L alternative indices. An element is inserted at the �rst empty position that is found.
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Thus, we rede�ne the function to idx (e, p) with idx : U ×{1, 2, . . . ,L} 7→ {1, 2, . . . ,K}.
In other words, repeated invocations with p ∈ {1, 2, . . . ,L} and a �xed e ∈ U , return
e's primary, secondary, . . . up to L-th index.

Several probing sequences are known, such as Linear Probing (LP), quadratic prob-

ing or double hashing, with LP being considered both simple and fast [Sedgewick and

Wayne, 2011, page 469�]. With LP, consecutive positions are probed in ascending (or

descending) order, s.t. ∀i , j ∈ 1..L : i +1 = j =⇒ idxi +1 = idxj . An advantage of this

sequence is its locality preserving property. Locality preserving means, elements stay

within close proximity to their primary index, which technically reduces cache misses

(compare 3.1).8 The absence of dynamic bucket resizing implies, that OA produces no

(memory) garbage at runtime.

Although the utilization is constant s.t. util = 1, OA is no silver bullet. A drawback

of OA is a performance deterioration starting at α ' 0.7. This is related to (primary)

clustering, where elements pile up in clusters [compare Sedgewick and Wayne, 2011, p.

472�]. Clustering leads to long probing sequences which degrade lookups to linear search

(compare bounded disorder in section 3.4.1).

3.3.2. Hash Tables in Java

Java provides a vast array of hash tables, all of which are restricted to a maximum of 231

elements. For larger sizes, programmers typically implement jagged or two-dimensional

arrays with SC. While the outer array has a �xed size, the inner arrays grow dynamically

on the heap. This �exibility has its price. Storing the meta-information, such as array

dimensions as well as object headers, deteriorates the utilization util . This overhead

increases proportional with the size of the outer array. In a hash table, it is advisable to

maximize the size of the outer array. The size is inversely proportional to the likelihood

of bucket collisions and ultimately time spent on linear search.9 Let 〈l〉 be the average
length of buckets, the graph in 3.3.1 plots the relationship between 〈l〉 and the hash

table's utilization util . Larger 〈l〉 result in a higher utilization, but growths of util

�attens out at util = 0.8. The underlying assumption of �gure 3.3.1 are always fully

occupied buckets. In reality, a trade o� has to be made between frequent bucket resizing

and inferior utilization.

With OA, sun.misc.Unsafe o�ers an alternative [compare Frampton et al., 2009,

Mastrangelo et al., 2015]. sun.misc.Unsafe grants direct, unveri�ed and unconstrained

8With SC, logically neighboring buckets do not necessarily occupy adjacent memory regions.
9Dynamically adapting the outer array's size causes costly rehashing.
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Figure 3.3.1.: Hash-table utilization versus bucket length for a jagged arrays

access to primary memory and can allocate contiguous blocks of up to 263 bytes. The

memory, allocated with sun.misc.Unsafe, is excluded from Java's built-in garbage

collector. This is desirable with OA � a garbage collector cannot reclaim memory, due

to the absence of dynamic array resizing.

3.3.3. Hash Tables in Model Checking

Holzmann [1988] shows, that maintaining the seen set C � the set of seen states �

signi�cantly adds to model checking time. This led Holzmann to propose the supertrace

method. With supertrace, a model checker uses a hash table to represent the seen set

C (see section 2.2.3). Hence, the model checker does not store seen states in C , but

their hash values. Consequently, supertrace o�ers two advantages: It reduces the overall

space consumed by C and the time required to determine a state's set membership in

C .

A hash function fps : st 7→ fp � similar to the idx function in 3.3 � maps each

state s to a hash value. We call the hash value a state's �ngerprint, denoted with fp. A

�ngerprint is a �xed sized sequence of bits. Supertrace obviously voids the completeness

guarantee of explicit state model checking. It is possible for two (or more) states s1 and
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s2 to collide in a �ngerprint collision, s.t. ∃s1, s2 : fps (s1) = fps (s2).10

It suggests itself to reuse a �ngerprint subsequence fp [a : b] of length k bits s.t. 2k = K

as the �ngerprint's index in t . The underlying assumption is, that fp [a : b] uniformly

distributes across the complete �ngerprint space. However, the full �ngerprint is still

inserted into C , to not increase the probability of �ngerprint collisions further.

In contrast to generic hash tables � as discussed in section 3.3 � a hash table in the

scope of explicit state model checking, does not need to support element removal: A

seen state cannot become unseen again. The seen set C can thus be optimized toward

the �nd-or-put operation: Insert (put) a �ngerprint or return false i� already present

(�nd).11

With disk-based model checking (compare section 2.2.3), the di�erence in throughput

between primary memory and external storage suggests (see 3.1.1), that C targets a

high load factor α and a high utilization util . Despite the adversarial e�ect of a high α

on the throughput of the �nd-or-put operation, the target remains valid for as long as

�nd-or-put throughput exceeds that of external storage. Once the throughput of �nd-

or-put surpasses that of an external storage, either all new or a subset of the current

�ngerprint generation should be evicted to external storage though.

Extension to External Storage in TLC

Disk-based model checker � which support the veri�cation of state graphs beyond the

size of the available memory � best represent the seen set C with a B-tree. A B-tree

has O (log n) insertion and lookup complexity. While a B-tree yields good performance

in the average case, a B-tree is inferior to a hash table in cases where the seen set C �ts

into memory.

This is why TLC chooses a di�erent, hybrid approach where C is split into a hash

table and (linearly sorted) external storage. For as long as the number of seen states

�t into t , external storage is not used. Eventually however, once the table's load factor

α exceeds a given threshold, the seen set C is extended to external storage. From that

point on, �nd-or-put � for a given fp � requires an external storage lookup, i� the

lookup in t returned a miss for fp.

An eviction policy selects �ngerprints to be moved from the hash table to external

storage. The ideal eviction policy evicts only those �ngerprints to external storage,

which have the lowest probability of being queried in the future. Hot-spots on the

10A �ngerprint collision is orthogonal to a hash table collision, which we de�ned in section 3.3.1.
11Laarman et al. [2010] introduce the term ��nd-or-put�.
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other hand remain in memory. An on-the-�y model checker cannot predict hot-spot

�ngerprints, because the probability depends on unknown properties of the state graph.

Thus, a naïve eviction policy � such as least recently used (LRU) � evicts �ngerprints.

Eviction is split in two phases:

The �rst phase takes place, when the load factor α reaches a pre-de�ned threshold.

At this point, all current �ngerprints in t � the old generation � are copied to ex-

ternal storage. This happens atomically from the point of �nd-or-put. In other words,

insertions and lookups in the seen set C are suspended. The old generation however is

not purged from t during the �rst phase. Instead, �ngerprints are one by one replaced

with new �ngerprints during the second phase. This replacement strategy makes the

eviction policy of TLC resemble LRU. No (write) access to external storage and pauses

are necessary during the second (replacement) phase. The advantage of this two staged

approach (copy & replace), is the ability to use the memory as a (read) cache for the

external storage. The overall memory utilization is therefor constantly high. Pausing

insertions and lookups mandates, that the �rst phase is short. The second phase does

not degrade the performance of �nd-or-put.

It follows from the previously discussed eviction policy, that �ngerprints � located

in the hash table � require a mark to indicate their storage location isMarked : m 7→
{table, external}. A �ngerprint can be located in the hash table exclusively or ad-

ditionally in the external storage. We will call replaceable �ngerprints, those with

m = external , as being marked.12.

To maximize the hash table's utilization util , the m-bit is encoded in each �ngerprint

at position fp [m]. Consequently, this reduces the e�ective �ngerprint length and thus

increases the collision probability. The generic solution to keep the collision probability

constant, is to split the �ngerprint space in half and assign each half to a dedicated set

Cm0 and Cm1. Fingerprints are assigned to either one of the sets, depending on fp [m].13

Accordingly, the fp [m] has to be excluded from the index calculation idx (compare

section 3.3.3). Otherwise, Cm0 and Cm1 load factors will be limited to α = 0.5, because

fp [m] is �xed in Cm0 and Cm1.

The external storage layout � designed to reside on magnetic disks � is a numerically

sorted list of all its �ngerprints. Multiple disk seek and read operations may be required

to lookup a �ngerprint. An index is maintained to �nd a disk block candidate on which

a �ngerprint is located. Interpolated binary search is run on the candidate to lookup

12In this context, it is irrelevant to indicate if a �ngerprint is located on external storage only.
13With SC, this solution worsens the overall memory utilization util .
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the �ngerprint. Perl et al. [1978] show that interpolated binary search has O (log log n)

runtime complexity. Benchmarks revealed an average of 1.05 seek and 1.1 disk read

operations per lookup request [Yu, 1999].

This section repeatedly noted, that the external storage is a linearly sorted �le. Thus,

in order to evict �ngerprints from memory to external storage, the �ngerprints have to

be sorted. The next section will therefor discuss sorting algorithms which are well suited

for sorting TLC's seen set C .

3.4. Sorting

The research on sorting algorithms has produced a plethora of useful results. A common

di�erentiator is, if the algorithm works in-place or out-of-place. An in-place or in situ

sort requires no auxiliary space � except for list pointers or temporary variables �

beyond the number of elements n of the dataset to be sorted. Thus, its auxiliary space

complexity is O (1). In contrast, standard merge sort � an out-of-place algorithm �

has an auxiliary space complexity of O (n). It is easy to see, that only in-place sorting

algorithms qualify for the usage in memory constrained environments such as explicit

state model checking.

One of the fasted in-place algorithms is Quick Sort [Hoare, 1962]. Quick Sort

is fast, because it swaps far distanced elements quickly. Its underlying assumption is

completely random data.

3.4.1. Bounded Disorder

For partially sorted data, Quick Sort is not the best algorithm. Dijkstra [1982]

proposed SmoothSort as an adaptive algorithm with excellent asymptotic behavior.

However, it is known to have a high constant factor [Schwarz, 2011]. In Java and

Python, the standard sorting algorithm today is TimSort [see Peters, 2011]. Tim-

Sort is adapted to patterns found in many real-world datasets. For small datasets, Cook

and Kim [1980] show that (straight) Insertion Sort provides good performance.

Partially sorted data can be de�ned as a dataset where only a small number of elements

with m � n are misplaced. In another de�nition given by Estivill-Castro and Wood

[1992] with m unbounded, the elements are maximally disordered by dis steps from their

proper position. With the latter de�nition it is obvious, why Quick Sort is not the

ideal sort algorithm for partially sorted data.
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Figure 3.4.1.: Bounded disorder parallel sorting scheme

3.4.2. Naïve Parallel Sort with Bounded Disorder

If the maximum disorder dis of a dataset is known and dis � n, the dataset can be

sorted with any sequential sorting algorithm in parallel. Let P be the set of processes,

the dataset can be split into b n
|P |c partitions. Each partition pari is sorted by a process

pi ∈ P . We call this Passpartition . In a second pass � a merge phase called Passmerge �

each process sorts the elements in the spari ∪ ppari+1 where spari is the su�x of pari of

length dis . The identi�er ppari+1 represents the pre�x of length dis of partition pari+1;

the next higher (or lower) partition to pari .

This naïve scheme is exempli�ed in �gure 3.4.1 for a disorder dis = 2, |P | = 3,

n = 16 and i = 1. The dotted, vertical lines mark the partition borders. Shadowed cells

indicate disordered elements. The �rst sequence labeled Passpartition , displays the initial,

disordered sequence before the partitions pari , pari+1 and pari+2 are sorted separately.

The Passmerge sequence in the middle is partially sorted, such that only the union spari ∪
ppari+1 has to be merged. The second union spari+1 ∪ ppari+2 is already fully ordered.

The Outputsorted at the bottom is fully sorted. The example demonstrates, that already

sorted elements, i.e. element 6 can become disordered after Passpartition .

For the scheme to work, the invariant Invdis = b n
|P |c > (2 ∗ dis) has to hold. Otherwise,

the processes do not have exclusive access to partitions.

Under the assumption of uniform disorder, this scheme scales (compare section 3.2)

in�nitely with |P | given that Invdis holds. Thus, n has to grow proportionally. The

scheme is optimal with regards to cache locality (see 3.1). The scheme increases the

number of elements to be sorted in total to n + (2 ∗ dis ∗ (|P | − 1)). Thus, this extra

work created by parallelization is inversely proportional to (dis ∗ |P |). With a su�ciently
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small coe�cient dis or |P |, the second summand becomes negligible.
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4. Problem Analysis

The Background and Fundamentals chapters above introduce all relevant concepts and

terms to understand the chapters to follow. This chapter starts with an as-is view on

TLC prior to this thesis. It identi�es shortcomings of TLC and sets a performance and

scalability baseline. The chapter 9 below compares the new algorithm � proposed in

chapter 7 and implemented in chapter 8 � with this baseline.

Afterwards, this chapter drills down and focuses on the seen set C speci�cally to

analyze its problems. This two staged approach is repeated in chapter 5 and chapter 6.

Throughout the remainder of this thesis, we discuss three variants of TLC. The �rst

variant, denoted by TLClegacy , corresponds to the �rst version of TLC, as present by Yu

et al. [1999]. The second variant corresponds to an intermediate version of TLC, which

uses lock-striping to guard the seen set C [Kuppe, 2012]. This variant will be denoted

by TLCstripe . The last variant � which includes the lock-free Cproto corresponding to

the algorithm proposed in chapter 7 � is denoted by TLCproto . Likewise, when we later

discuss variants of the seen set C in isolation, the subscripts Clegacy , Cstripe , and Cproto

denote the variants respectively. If a statement applies to all variants, no subscript is

given.

4.1. Parallel TLC

The �rst versions of TLC date back to the '90s, the early stages of the multi-core rev-

olution. As such, TLClegacy has indeed been designed for and tested on multi-processor

hardware. However, in the '90s the number of processes was still limited to low numbers.

This re�ects in TLClegacy 's scalability, when TLClegacy is run on today's hardware with

high numbers of processes. Figure 4.1.1 shows that TLClegacy 's scalability peaks at ap-

proximately 16 workers (indicated by the dashed vertical line), at which point coherence

(see section 3.2) causes TLC to slow down. Overall, TLClegacy never exceeds a speedup

from parallelization of Zpeak ≤ 2.5.

What are the reasons for TLClegacy 's poor scalability? The bulk operation � the scsr

37



0 20 40 60 80 100 120

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

Number of Workers

S
pe

ed
up

 Z

Figure 4.1.1.: Scalability of TLClegacy
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loop � of the model checking algorithm introduced in section 2.2.3 has only minimal

contention, provided that the state graph is well-shaped. Before we loosely de�ne well-

shapedness, lets consider the opposite: a single sequence of states, s.t. each state has only

one successor. It is obvious, that parallel successor generation cannot gain a speedup.

Thus, for parallel successor generations, we assume state graphs to have a high branching

factor and a tree-like shape [compare Pelánek, 2008]. With a well-shaped state graph,

successor generations can execute in parallel (compare 2.1.7).

Under the well-shaped assumption, the cause for the scalability of TLClegacy can be

attributed to contention and coherence exhibited by the shared data structures S ,C ,T

(compare section 2.2.3). The eventual negative speedup con�rms the presence of coher-

ence, which section 3.2 de�ned to be an e�ect of coherence only. Clearly, a scalability

benchmark of each data structure in isolation can reveal the dominant contention and

coherence bottlenecks.

The obvious choice to start benchmarking is the seen set C . For the unseen set S

and forest T , a well-shaped state graph allows us to devise naïve partitioning: Instead

of a globally shared unseen set, each worker w can operate its own subset Sw of unseen

states with the following property: ∀Su , Sw ∈ Sall : Sw ⊆ Sall ∧ Su ⊆ Sall ∧ Sw ∩ Su = ∅
with Sall being the union of all unseen sets. This partitioning exhibits no contention or

coherence and thus does not hinder TLC to scale.

The same argument applies to the forest. Let (s , t)w be a pair such that t is the

successor of s and w identi�es the worker which generated t . The pair (s , t)w is then

stored in a forest Tw local to a worker. The overall forest is constructed by traversing

the path in the union of all Tw . We return to these two approaches, denoted with Sproto

and Tproto in section 9.2.

Ultimately, the seen set C is TLC's only data structure that cannot be partitioned

among workers. By its de�nition (see section 2.2.3), the seen set C stops a model checker

from carrying out redundant work. Therefor, it has to be shared.

4.2. Seen Set

When the scalability of the Clegacy is measured in isolation, we obtain �gure 4.2.1. It

con�rms the earlier measurement in �gure 4.1.1. The Clegacy exhibits both contention

and coherence, but contention dominates. The reason is immediately obvious from the

implementation: Clegacy is guarded by a single, global lock.

Earlier work by Kuppe [2012], replaced coarse with �ne grained locking, by applying
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Figure 4.2.1.: Scalability of Clegacy
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the lock-striping pattern described in section 3.1.2. Lock-striping can be directly applied

to Clegacy . The Clegacy uses SC as its collision resolution strategy (compare section 3.3.1),

allowing us to guard each collision bucket by a dedicated lock. At most m ≤ B locks are

used, where B is the number of collision buckets. Lock-striping successfully eliminates

contention.

However, lock-striping still does not scale in�nitely. Figure 4.2.2 shows a growth in

throughput with increasing lock numbers, but throughput peaks eventually. Afterwards,

throughput even decreases.1 This e�ect can be attributed to increased coherence, in-

troduced by lock-striping. This assumption is plausible, since higher lock counts result

in a large space requirement. In turn, this causes a higher number of cache misses per

process. The e�ect of lock-striping on a hash table's utilization util however is negligible.

E.g. the space requirements of 223 locks is lower than one GB.

Another relevant property of Clegacy with regards to util surfaces, when Clegacy extends

to external storage (compare section 3.3.3). Its hash function bucketIdx uses the k

lowest �ngerprint bits fp [LSB , k ], where LSB denotes the least signi�cant bit (compare

section 3.3.1 and 3.3.3). One consequence of this hash function is total disorder in the

hash table t that is internal to Clegacy . Total disorder prohibits sorting �ngerprints with

the naïve scheme described in section 3.4.2. A second consequence is that sorting t

in-place violates the invariant of bucketIdx (compare section 3.4). In-place sort moves

�ngerprints away from their index. Sorting t out-of-place on the other hand, doubles the

space requirement of t . Consequently, utilization of t and ultimately Clegacy is halved.

At the implementation level, the technical design of a collision bucket can either be

a linked list or an array (compare section 3.3.2). In the scope of TLC � where �nger-

prints are 64 bit Java (primitive) longs � a linked list mandates a wrapper object for

each �ngerprint to store the list pointers. This is prohibitive, if util is to be maximized.

Table t is thus implemented as a jagged array (see section 3.3.2). A jagged array re-

sults in repeated memory allocations when fully occupied buckets grow. This leads to

performance degradation due to excessive garbage collection.

In summary, the existing Clegacy and its replacement Cstripe su�er from the following

shortcomings:

1. A 50% space overhead inherent in out-of-place sorting hash table t .

2. Non-parallel, sequential sort during eviction to external storage.

3. A performance penalty resulting from the jagged array implementation of t .
1The data was obtained with 128 processes, a table with size K = 235 and a load factor α h .38.
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4. Limited scalability due to contention and coherence (latter with lock-striping).
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5. Requirements

Based on the problems related to Clegacy and Cstripe we identi�ed in the previous section,

a list of requirements for Cproto are presented next. In this chapter, we present high-

level requirements only, which are thus implementation independent. Implementation

speci�c requirements can be found in section 8.1. This distinction is made in anticipation

of alternative implementations, which will have unique implementation requirements

but share the same high-level requirements. In this sense, it is valid to regard the

requirements in this chapter as requirements for the algorithm proposed in chapter 7.

Similar to the previous chapter 4, we start with requirements that are relevant at the

model checker level, before listing requirements speci�c to the seen set C .

5.1. Parallel TLC

Section 2.2.3 summarizes the hardware on which TLC is commonly executed. Any

solution presented as part of this thesis, has to support the aforementioned environments.

However, we further restrict our requirements to a symmetric resource set, meaning that

the compute resources (processes) are matched by similar memory resources.

Ideally, TLC's throughput is constantly high (see section 3.2). Still, it is acceptable

for short periods to slow down or suspend model checking, if thereby a higher overall

throughput can be achieved. In other words, latency is not a concern. The only exception

to this requirement a�ects models which can be checked within seconds. In this cases,

TLC's startup time should be low.

Similarly, TLC's performance of non-disk-based model checking shall not negatively

be in�uenced by disk-based model checking. In other words, support for disk-based

model checking should have no upfront cost, s.t. it degrades performance of non-disk-

based model checking. We expect the majority of users to not need disk-based model

checking. In consequence, this leads to a high utilization (util) requirement for Cproto .
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5.2. Seen Set

A replacement algorithm Cproto for Clegacy and Cstripe can be tailored to the speci�c

requirements ofTLC. As such, the algorithm does not have to rely on a generic hash table

algorithm for Cproto 's internal t . It su�ces, when t supports storing �ngerprints only.

Furthermore, the table t needs not support all operations normally supported by generic

hash tables. Only a concurrently executable �nd-or-put operation with asymptotically

constant time complexity is required. More speci�cally, no element removal is needed.

Limiting the set of operations will simplify the new algorithm.

The new hash table has to have a memory utilization util that exceeds that of the

existing Clegacy and Cstripe . This mandates to sort �ngerprints in-place (compare sec-

tion 4.2). The average throughput � even under a high load factor of α ≥ 0.8 � must

be above a throughput achievable with disk-based model checking. Again, throughput

has to at least match the one of Clegacy and Cstripe . The average latency should be low,

which constraints (automatic) garbage collection.

The table t needs not support dynamic memory allocation. It does not have to be

re-sizable. A static allocation of the assigned memory is acceptable. However, the

hash table must be expandable to external storage (compare section 3.3.3) for TLC

to continue to support disk-based model checking. Eviction can temporarily suspend

the �nd-or-put operations. Forward compatibility, i.e. sorting �ngerprints larger than

64 bits � likely multiples of 64 bits � should be considered as part of the algorithm

design.

The new algorithm must scale with the number of processes and memory. More

precisely, the static allocation, the �nd-or-put operation, as well as extension to external

storage must all scale. As a consequence, initialization and extension to external storage

should be done in parallel. The number of processes is �xed and known in advance.

Scalability has to be quanti�ed (compare section 3.2) based on empirically obtained

scalability results.

The correctness of the new algorithm � formulated as safety properties and liveness

properties � must be veri�ed. We require that the core parts of the implementation

must be veri�ed and auxiliary parts must be validated.

The new algorithm must be compatible with the distributed �ngerprint set described

in section 2.2.3.
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6. Related Work

This chapter discusses, to what extent existing work and known algorithms solve the

previously identi�ed problems (see chapter 4) and satisfy the requirements above (see

chapter 5).

Before we discuss the seen set C speci�cally though, we broaden the scope to other

explicit state model checkers in search for scalability improving variants of the original

BFS algorithm (compare listing 1). Especially, section 6.1 outlines approaches similar in

concept, to what we proposed in chapter 4 as Sproto . However, the authors also address

load-balancing concerns.

6.1. Parallel Model Checking

For the Spin model checker, Holzmann et al. [2011] suggest to speed up explicit state

model checking on multi-core systems with large quantities of memory, or distributed

systems, by transforming the model checking algorithm into an embarrassingly parallel

algorithm (compare section 2.1.7). Following the de�nition in section 2.1.7, an embar-

rasingly parallel model checking algorithm executes its workers in isolation, s.t. it is

acceptable to carry out redundant work. Technically, such an algorithm can be com-

pared to the traditional algorithm outlined in listing 1, but without a shared seen set

C . This change eliminates both contention and coherence. Essentially, n instances of a

model checker execute concurrently with di�erent start parameters, assuming that each

instance veri�es a disjoint subgraph of the state graph. Fittingly, Holzmann et al. call

this a swarm. However, the correct start parameters to optimally partition the state

graph are unknown a-priori, which turns the algorithm into a probabilistic approach. An

exhaustive search of the complete state graph therefor still requires the same amount

of time like with the original explicit state model checking algorithm. This approach is

thus only applicable, if the size of the state graph renders an exhaustive search infeasible

anyway.

As an optimization to Spin's classic DFS algorithm, Holzmann [2008] introduces
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stack slicing to improve concurrency of DFS up to linear speedup, but only for safety

checking. Stack slicing assigns unexplored states to an idling worker, whenever the size

of the stack of unvisited states reaches a threshold. With stack slicing, only a fragment of

the counterexample can be constructed though, unless a similar data structure to TLC's

forest T is maintained. Spin does not maintain a full forest. It is therefor unknown, to

what extent scalability is degraded when T is maintained.

In Holzmann [2012], the author describes an optimization to Spin's BFS algorithm,

to reduce coherence on Spin's state queue (compare unseen set S in section 2.2.3). The

global queue is (logically) partitioned among workers, to grant each worker exclusive

access. For load balancing, each successor state is randomly added to one of the state

queues. Synchronization � where necessary � is achieved by using CAS. Strict BFS is

maintained by globally tracking the height of the BFS tree at which the workers operate.

Laarman et al. [2011] describe the concept of pseudo-BFS exploration, to reduce

contention on the queue S , which achieves superior scalability. With pseudo-BFS,

workers need not synchronize to constantly operate at the same height. Instead, workers

explore at di�erent height of the state graph. Load balancing only becomes necessary,

when a worker runs out of unexplored states. Pseudo-BFS, introduces randomness into

BFS, depending on how workers are scheduled. As a consequence, the LTSMin model

checker cannot guarantee to �nd the shortest counterexample. In practice however,

under the assumption of the well-shapedness of state graphs (compare section 4.1) and

a fair scheduler, an approximation of the shortest counterexample can be expected to

be constructed.

6.2. Seen Set

Notably, Spin di�erentiates itself from other model checkers by its adoption of Bloom

�lters as a replacement of the seen set C [compare Holzmann, 2005]. A Bloom �lter is a

probabilistic data structure, which supports insertion and lookup operations in constant

time [see Bloom, 1970, Putze et al., 2009]. It does not support element removal. As a

result of collisions, a Bloom �lter lookup can produce a false positive to a membership

query. In order to achieve a su�ciently low false positive probability, Holzmann suggests

to use multiple Bloom �lters. However, multiple Bloom �lters require multiple hash

functions. Thus, compared to hash tables, Bloom �lters trade a reduction in space, for

an increase in runtime. Holzmann argues, that two hash functions result in a su�ciently

low emission probability.

48



Barnat et al. [2015] describe the design of DiVinE's hash table, which has been

optimized to scale with the number of processes. Scalability tests went as far as 32

processes. The table's collision resolution strategy is OA. The design is di�erent to

the algorithm presented as part of this thesis. First and foremost, the authors argue

that dynamic allocation provides a better overall resource usage. Dynamic allocation

allows the table to grow with the number of elements inserted. On one hand, this

leaves additional space to the unseen set S , while the hash table is still small. On the

other hand, this is relevant for model checkers without support for disk-based model

checking. Here, model checking terminates, when the hash table reaches its maximum

size, even if the state graph has not been fully generated and veri�ed. Thus, a user has

to correctly estimate the size of the state graph and choose a su�ciently large size for

the seen set C a-prior. If underestimated, model checking ends without verifying the

complete state graph. If the environment supports a CAS operation, which matches

the �ngerprint length, the table is lock-free. Otherwise, each position is guarded by

a (single-bit) spin-lock. To handle concurrent insertion and table resizing, each insert

operation has to �nally check whether the table has been resized. If the table has been

resized concurrently, the insertion operation restart. The hash table does not support

an extension to external storage, thus does not support disk-based model checking.

The work in Laarman et al. [2010] is most relevant to this thesis. The authors present

a veri�ed hash table algorithm for storing �xed-sized �ngerprints and associated data:

the corresponding state. Scalability has been shown for up to 48 processes. Collision

resolution employs OA. The probing sequence is called walking-the-line, which is a com-

bination of linear probing and double hashing to reduce clustering. The hash table's

set of operations is limited to �nd-or-put. The table cannot be resized. The algorithm

to �nd-or-put �ngerprints is lock-free using CAS. However, in order to atomically write

a �ngerprint and its corresponding state, a spin-lock guards the table's position. This

changes the overall algorithm to be wait-free. Similar to the algorithm presented by

Barnat et al. and in contrast to this thesis, the table does not support being extended

to external storage.

To conclude this chapter, none of the discussed solutions and algorithms �t our bill of

requirements. Especially, no algorithm has support for disk-based model checking with

its unique set of attached requirements. The resizable hash table proposed in Barnat

et al. [2015] is primarily of interest for model checker without support for disk-based

model checking. With TLC, underestimating the size of the state graph does not lead

to termination, but premature disk-based model checking. With regards to Bloom
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�lters, we do not wish to further weaken the completeness guarantee of TLC (compare

section 3.3.3). The results and design decisions of Laarman et al. [2010] validate our own

�ndings. However, we have no need to store associated states in TLC's hash table. The

proposed load-balancing techniques in section 6.1, in�uence our design of Sproto . More

on this can be found in chapter 11.

50



7. Algorithm

Contrary to the previous chapters, which discuss TLC's scalability at both, the model

checker level and the level of the seen set C , the following two chapters focus on the

seen set C exclusively. We do not look at Sproto or Tproto , but propose an algorithm and

its implementation for Cproto . The algorithm takes the sections related to the seen set

C of the Problem Analysis, the Requirements and the Related Work into account. The

section 9.2 further below however, combines Cproto with Sproto and Tproto and discusses

the scalability of what we introduced as TLCproto in chapter 4.

If a reader's interest is limited to the algorithm, this chapter can be read by itself,

without reading the implementation chapter 8. Note though, that the development of

the algorithm followed an iterative process, s.t. we speci�ed a version of the algorithm

in PlusCal and veri�ed its correctness. Afterwards, we created a corresponding imple-

mentation and measured its performance and scalability. Depending on the outcome

of the measurement, we altered the speci�cation and changed the implementation cor-

respondingly. We repeated the speci�cation, implementation and measurement cycle

several times and thus obtained di�erent versions of the algorithm. In other words, the

speci�cation driven development process allowed us to explore di�erent designs with an

acceptable overhead. Thus, our own �ndings con�rm the bene�ts of the TLA+ based

development process as stated in Newcombe et al. [2015].

We consider the version of the algorithm proposed to be the optimal solution within the

window of constraints imposed by today's hardware. With future hardware generations

� especially a more powerful CAS operation (compare section 3.1.1) � other versions

are expected to provide better scalability. Other versions of the algorithms can be found

alongside the implementation.

7.1. Design

To address the problem of insu�cient utilization util , observed with the existing Clegacy

and Cstripe , the algorithm for Cproto replaces the SC collision resolution strategy with
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OA (compare section 3.3.1). OA removes the overhead inherent in a jagged array as

discussed in section 3.3.2. With OA, the hash table � internal to Cproto � requires

no meta-information. Replacing SC with OA thus eliminates one out of two causes for

Clegacy 's unsatisfactory util .

OA requires to choose a probing sequence. The probing sequence selected for Cproto

is LP. Why did we choose LP as the probing sequence, when LP leads to clustering

(see section 3.3.1)? To answer this question, lets recall the second cause for the low

util observed with Clegacy . Sorting Clegacy out-of-place, has an O (n) auxiliary space

requirement attached to it. In order to sort �ngerprints in-place however, a probing

sequence is needed, which is invariant under sorting: Let t and t ′ denote the unsorted and

the sorted hash table respectively and let fp be a �ngerprint, idx (fp, 1..L) � as de�ned

in section 3.3.1 � is invariant, i� ∀fp ∈ t : ∃p, p ′ ∈ 1..L : t [idx (fp, p)] = t ′ [idx (fp, p ′)].

In other words, �ngerprints remain within their probing sequence in the sorted hash

table t ′.

What does it constitute for idx (fp, 1..L) with LP to be invariant under in-place sort-

ing? The section 3.3.3 showed that idx (fp, 1..L) uses a subsequence of 2k = K �ngerprint

bits as the �ngerprint's primary position, denoted by idx (fp, 1). Clearly, if we choose

fp [MSB , k ], s.t. idx (fp, 1..L) uses the k numerically most signi�cant bits (MSB), the

following invariant for idx (fp, 1..L) holds: ∀pos ∈ 1..K : pos < idx (fp, 1) ⇒ t [pos ] <

t [idx (fp, 1)]. In other words, all �ngerprints located at lower positions of t than fp's

primary position idx (fp, 1), are numerically lower than the numerical value of fp. Con-

sequently, under the assumption of a fully occupied t , s.t. n = K , an in-place sort of t

does not have to move fp to a position that is lower than its primary position.

For the above to hold for t with n ≤ K (a t with empty positions), we simply restrict

the in-place sort, s.t. it is not allowed to swap �ngerprints with empty positions. In other

words, a t with m empty positions is projected to
∏

empty (t). The t and
∏

empty (t) are

identical, except that all empty positions are discarded and K ′ = K − m. We denote

this restriction with R1.

Next, we show that fp never moves past its last alternative position idx (fp,L). For

fp to move past idx (fp,L) in t ′, more than L �ngerprints, whose primary position is

also idx (fp, 1), have to be present in t . Obviously, this contradicts the de�nition of

idx (fp, 1..L) in section 3.3.1. Maximally L �ngerprints, with an identical primary posi-

tion, are present in t .

To summarize the above paragraphs, the choice of �ngerprint bits fp [MSB , k ] com-

bined with LP, provide an upper bound for the disorder of �ngerprints (compare sec-
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tion 3.4.1). This bounded disorder of t is a fundamental property of the proposed

algorithm.

Algorithm 3 : Index calculation excerpt of Open Addressing speci�cation
1 bitshift(fp, p)

∆
= let k

∆
= choose k ∈ 1 . . K : 2k = K

2 in mod(shiftR(fp, k − 1) + 1 + p, K )

3 rescale(k , maxF , minF , fp, p)
∆
= let f

∆
= (k − 1)÷ (maxF −minF )

4 in mod((f ∗ (fp −minF + 1)) + p, k)

5 idx (fp, p)
∆
= if ∃ n ∈ 1 . . K : 2n = K then bitshift(fp, p)

6 else rescale(K , max (fps), min(fps), fp, p)

This property is found in the PlusCal speci�cation of the algorithm in appendix B.2.

The idx function (alg. excerpt 3) de�nes LP as its probing sequence. Additionally �

knowing that the modulo operation mod is mathematically more expensive � it de�nes

bitshifting to be an optimization, if the size of the table K is a power of two (alg. 3 line

1 and 2). The shiftR operator right-shifts the bits of the �rst operand by the number of

positions of the second operand. For all other values of K , a �ngerprint is scaled to the

size of t (alg. 3 line 3 and 4). We discuss the rational behind the modulo operation in

algorithm 3 on line 2 after the next paragraph.

The section 5.2 mandates that Cproto achieves a high utilization which is related to a

high load factor α. Clearly, α is restricted by the upper bound L of the probing sequence.

On average, the length of the probing sequence L is proportional to α. A lower bound

L thus leads to a lower α. We study the relationship of α and L in section 7.2. In this

section, it su�ces to show, that L � in contrast to α � is a direct measure for the

maximum disorder in t . An upper bound for the disorder is required, to sort t with the

parallel scheme proposed in section 3.4.2.

Another reason, why the algorithm indirectly restricts α via L is scalability. Main-

taining α would require to count the number of �ngerprints in t . This counter � even if

striped (compare section 9.1) � exhibits both high contention and coherence. All work-

ers read it on each �nd-or-put and increment the counter on every successful �nd-or-put

operation. With the upper bound L on the other hand, the algorithm does not need the

counter. With increasing α, the probability of a �nd-or-put operation to hit L increases.

Eventually, a worker hits L and starts eviction subsequently. The section 7.1.2 goes into

more detail of how and when eviction is triggered.

Earlier, we promised to discuss the mod operator in algorithm 3 on line 2. So far, we
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ignored the fact that our mental model of t , with a collision resolution strategy of OA,

violates the hash table property stated in section 3.3. A hash table, which is assumed

to be a sequence, does not provide a uniform collision probability with OA and LP.

Towards the end of t , with end de�ned by the direction of the probing sequence, the

probability of collisions increases linearly up to be L times higher for the last position

t [K ]. Therefor, it is common to de�ne t , s.t. it is a circular list. A circular list has the

property, that the collision probability is uniformly distributed, even for the positions

we just de�ned to be at the end of t .

In the algorithm, the circular list is re�ected by the mod operation of bitshifting and

rescale. The probing sequence for a �ngerprint fp, whose primary position is distanced

less than L positions from position K , wraps around. A tail of fp's probing sequence

points to positions that are lower than idx (fp, 1). Thus, we can classify the set fps of

all �ngerprints into two disjunct sets
	
fps and

−→
fps : those whose probing sequence wraps

and those whose probing sequence does not wrap.

A circular list design demands to revisit our earlier claim, i.e. LP is invariant under

in-place sort. Earlier, we restricted in-place sort s.t. it is not allowed to swap �ngerprints

with empty positions. For LP to remain invariant, we state an additional restriction R2:

Fingerprints in
	
fps in the range t [1] to t [L] must not be swapped with �ngerprints in

−→
fps . In other words, the (logically) circular list t is up to position L disentangled into a

non-circular sequence once sorted. For the above restriction to hold, the minimal length

K of the table is constrained to 2 ∗ L ≤ K . Note, that the section 7.2 shows that the

minimum length constraint is not relevant in practice. The section 7.1.2 provides more

detail on the additional restriction. Especially, it discusses the e�ects of this restriction

on Insertion Sort. First though, we shift the discussion from sorting to lock-freedom.

The new algorithm is designed to be lock-free (compare section 3.1.3) with regards

to the two operations �nd-or-put and eviction to external storage individually. Both

operations however need to be mutually exclusive; during eviction, �nd-or-put calls

are suspended. Vice versa, no eviction is possible while workers execute �nd-or-put

operations.

Designing the algorithm to allow eviction and �nd-or-put to happen concurrently,

would require DCAS or CASN � to atomically swap two adjacent or two non-adjacent

�ngerprints with e.g. Insertion Sort orQuick Sort. As we discussed in section 3.1.1,

neither DCAS nor CASN are provided by today's hardware. Using DCAS or CASN in

the speci�cation in appendix B.2, would thus render the algorithm unimplementable.

The following pages detail the �nd-or-put and eviction operations.
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7.1.1. Find-or-Put without External Storage

Prior to the initial eviction, the external storage is empty. Thus, a �ngerprint match can

only be present in primary memory. Therefor, the �nd-or-put operation (see algorithm

4) directly puts the new �ngerprint fp into t , i� the current position pos � given by

idx (fp, index ) � is empty . In other words, �nd-or-put relies on the invariant, that

an empty table position is a mark for all higher positions to be no match. This is

obvious, because with LP, a possible match would have been put at the empty position.

Generally, following an empty position, no higher position of the probing sequence can

produce a match: t [idx (fp, index )] = empty ⇒ ∀i ∈ index ..L : fp 6= t [idx (fp, i)].

If another worker tries to concurrently put (compare algorithm 2) its �ngerprint at

t [pos ], CAS guarantees that only one worker succeeds (algorithm 4 line 6 and 7). The

losing worker repeats �nd-or-put at t [pos ], to check if the winner put a match (alg. 4

line 9).

I� t [pos ] is found to be occupied (non-empty), the worker compares the �ngerprint

at t [pos ] (alg. 4 line 12). Unless a match is found (alg. 4 line 15), the worker repeats

�nd-or-put with the next higher index in the probing sequence (index + 1), until the

upper bound of the probing sequence L is reached.

Algorithm 4 : Find-or-put excerpt of Open Addressing speci�cation
1 insrt : while (index < L){
2 expected := table[idx (fp, index )] ;
3 if (expected = empty ∨
4 (expected < 0 ∧ expected 6= (− 1) ∗ fp)) {
5 cas : CAS (result , idx (fp, index ), expected , fp) ;
6 if (result){
7 goto pick Match/Success

8 }else {
9 goto insrt Retry current position

10 }
11 } ;

12 isMth : if (isMatch(fp, idx (fp, index ), table)){
13 goto pick Found

14 }else {
15 index := index + 1 ; Try next position

16 } ;
17 } ;

Obviously, the �nd-or-put operation described above is lock-free. In this section, we
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do not yet concern ourselves with the second disjunct of the �rst if-clause at line 4.

Instead, we defer its discussion to section 7.1.3.

7.1.2. Initial Eviction

The �rst worker to hit the upper bound L, �ips the global variable evict and waits for

the remaining workers to suspend (algorithm 5, line 11 to 16). The other workers detect

the pending eviction during the next invocation of �nd-or-put and suspend subsequently

(alg. 5 line 4 to 8). This variant is preferable over a shared lock (compare section 3.1.2),

where the �rst worker to hit L, converts its shared lock to an exclusive one. The overhead

of shared lock acquisition outweighs that of the read of evict.

In the TLA+ speci�cation, the set of workers detect the pending evictions upon the

next read of evict. An implementation however, is free to use a relaxed consistency model

� such as eventual consistency � to reduce coherence of evict. This comes at the price

of an extended period of time, where an increasing number of workers is prevented from

making progress, until the last worker suspends. However, eviction occurs su�ciently

infrequently for such an optimization to be viable.

An even simpler design variant is to omit evict entirely and wait for all workers to

individually hit L. Under the assumption of a uniform distribution of �ngerprints, the set

of workers can be expected to hit L almost simultaneously. However, we did not choose

this variant based on the assumption that infrequent writes allow NUMA architectures

(see section 3.1) to e�ciently cache evict.1

With all workers suspended, eviction sorts table t and afterwards �ushes the �nger-

prints to the external storage. For large values of K � the size of the table � the runtime

and scalability of eviction is unacceptable though. Thus, we require eviction to execute

concurrently. In section 7.1 we show, that t has a bounded disorder L. This property

can be exploited to partition t among workers and sort the partitions concurrently with

the scheme described in section 3.4.2 with dis = L.

Assuming a su�ciently small L, Insertion Sort accomplishes best case complexity,

while being simple to implement and equipped with negligible constant costs. Addition-

ally, it provides a good cache locality. However, in accordance with the restriction R1

introduced in section 7.1.1, we require a modi�ed version of Insertion Sort to prevent

�nd-or-put from producing false negatives. The comparison on line 3 of the compare

operator in excerpt 6 accounts for the restriction R1.

1We assume an invalidation based cache coherence protocol such as MESI.
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Algorithm 5 : Synchronization to switch between �nd-or-put and eviction
1 variable evict = false ;

2 process (p ∈ Writer){
3 put : . . .

4 if (evict){
5 waitCnt := waitCnt + 1 ;
6 waitEv : await evict = false ;

7 endWEv : waitCnt := waitCnt − 1 ;
8 goto put
9 } ;

10 . . . �nd-or-put operation here. tryEv only executed if �nd-or-put unsuccessful.

11 tryEv : if (evict = false){
12 evict := true ;

13 waitIns : await waitCnt = Cardinality(Writer)− 1 + Cardinality(Reader) ;
14 call Evict() ;
15 endEv : evict := false ;

16 goto put ;
17 }
18 }

Algorithm 6 : Comparison operator used by Insertion Sort of Open Addressing
speci�cation

1 wrapped(fp, pos)
∆
= idx (fp, 0) > mod(pos , K )

2 compare(fp1, i1, fp2, i2)
∆
=

3 if fp1 6= empty ∧ fp2 6= empty
4 then if wrapped(fp1, i1) = wrapped(fp2, i2)
5 then if i1 > i2 ∧ fp1 < fp2 then − 1 else 1
6 else if i1 < i2 ∧ fp1 < fp2 then − 1 else
7 if i1 > i2 ∧ fp1 > fp2 then − 1 else 0
8 else 0
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A second modi�cation is related to the circular table layout chosen to achieve a uniform

collision probability (see section 7.1). We consider three cases:

1. The �rst if-clause considers two �ngerprints fp1, fp2 ∈ fps , which � according to

the operator wrapped in excerpt 6 on line 4 � both either wrapped or did not wrap.

In this case, a basic comparison is done (see 6 on line 5), s.t. the numerically lower

�ngerprint is swapped to the lower position of the two �ngerprints.

2. The comparison on line 6 handles two �ngerprints fp1, fp2 ∈
	
fps . Due to the fact,

that this is the else-branch of the previous if-clause, one of fp1, fp2 is known to

have wrapped. Thus, if the lower positioned �ngerprint is numerically lower, it is

swapped with the other.

3. Finally, line 7 of excerpt 6 handles two �ngerprints, with one in
−→
fps and the other

in
	
fps . The �ngerprints swap, i� the �ngerprint in

	
fps is at a higher position than

the �ngerprint in
−→
fps . Consequently, all wrapped �ngerprints in

	
fps form a cluster

at the beginning of t and all �ngerprints in
−→
fps are moved to higher positions of

this cluster.

The comparison in case 3 contradicts the previously stated restriction R2 in section 7.1,

s.t. two �ngerprints from
−→
fps and

	
fps will not be swapped. First, we discuss, why the

contradiction of R2 is necessary. Then we show, why LP still remains invariant under

in-place sorting with the modi�ed Insertion Sort.

Let fpa , fpb ∈
	
fps and fpx ∈

−→
fps . We assume fpa to have wrapped and to be numerically

lower than fpb . We further assume that fpx is at a position lower than fpa . In other

words, fpx is in-between fpa and fpb . Obviously, in order for t to be sorted, fpa and

fpb have to be swapped. In this scenario, the comparison in case 1 and case 2 do not

apply. Insertion Sort only compares adjacent elements and thus neither compares

nor swaps the �ngerprints fpa , fpb . With the comparison in case 3 however, fpa and fpx

swap places which eventually results in a comparison and a swap of fpa and fpb .

Clearly, swapping fpx and fpa does not invalidate our invariance claim above, because

the fpx can at most be moved to its idx (fp,L) position. This follows from the earlier

argument made in the scope of a non-circular table.

Contrary to B.2, the speci�cation B.3 veri�es this scenario in isolation from lock-

freedom.

With regards to standard Insertion Sort, both modi�cations are limited to the

comparison operator of the nested while loop (alg. 7 line 5 and 6). Thus, the speci�cation
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of Insertion Sort resembles that of standard Insertion Sort(see alg. 7).

Algorithm 7 : Modi�ed Insertion Sort of Open Addressing speci�cation
1 procedure Evict()
2 variables ei = 1, ej = 1, lo = 0 ; {
3 strIns : while (ei ≤ K + L){
4 lo := table[mod(ei + 1, K )] ;
5 nestedIns : while (compare(lo, mod(ei + 1, K ),
6 table[mod(ej , K )], mod(ej , K )) ≤ − 1){
7 table[mod(ej + 1, K )] := table[mod(ej , K )] ;
8 ej := ej − 1 ;
9 if (ej = 0){goto set}
10 } ;
11 set : table[mod(ej + 1, K )] := lo ;
12 ej := ei + 1 ; ei := ei + 1 ;
13 } ;

14 Write to external storage here.

15 rtrn : return ; }

Insertion Sort runs in parallel, with the scheme proposed in section 3.4.2. The

partitions of t are of equal size to evenly distribute the workload across workers. Ideally

though, partition borders are placed at empty positions. As shown in section 7.1.1,

an empty position (or generally an isMarked position as introduced below) guaran-

tees, that all �ngerprints at higher positions are numerically larger. In other words,

∀pos ∈ 1..K : pos = empty ⇒ ∀poslower ∈ 1.. (pos − 1) : ∀poshigher ∈ (pos + 1) ..K :

t [poslower ] < t [poshigher ]. This invariant implies, that i� partition borders are placed at

empty positions, the second pass � the merge phase � of the naïve parallel sort scheme

discussed in section 3.4.2 is unnecessary. We continue to create partitions of equal size

though, because we do not yet know how to �nd empty positions in constant time.

Once t is fully sorted, the set of workers � reusing the previously chosen partitions

� write the sorted �ngerprints in t to the external storage in parallel and set the

�ngerprint's m-bits (compare section 3.3.3). Afterwards, each evicted �ngerprint in t

is marked as evicted. The TLA+ operator is de�ned to be isMarked (pos , table) ,

table [pos ] < 0.

A parallelized write scales with the number of disks available. We even expected it to

outperform a sequential write to a single disk, because a set of processes never makes

the disk wait for data. We did not model the parallelized external storage write, due to
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its simplicity. Instead, algorithm 8 writes the �ngerprints sequentially and atomically

� as evident by the single label �ush � into external storage.

Algorithm 8 : Eviction writes �ngerprints to external storage
1 �ush : while (ei ≤ K + L){
2 lo := table[mod(ei , K )] ;
3 if (lo 6= empty ∧
4 lo > largestElem(newexternal) ∧
5 ((ei ≤ K ∧ ¬wrapped(lo, ei)) ∨
6 (ei > K ∧ wrapped(lo, ei)))){
7 Copy all smaller fps than lo from

8 secondary to newexternal.

9 newexternal := Append(newexternal ◦
10 subSeqSmaller(external , newexternal , lo), lo) ;
11 Mark table[mod(cpy,table)] as being

12 written to external.

13 table[mod(ei , K )] := lo ∗ (− 1) ;
14 } ;
15 ei := ei + 1 ;
16 } ;
17 Append remainder of external to newexternal and

18 assign newexternal to external.

19 external := newexternal ◦
20 subSeqLarger(external , newexternal) ;
21 newexternal := 〈〉 ;

7.1.3. Find-or-Put with External Storage

In the presence of (non-empty) external storage (algorithm 9 line 1), the work carried

out as part of �nd-or-put increases. Where a single loop used to be su�cient to �nd a

match for the �ngerprint fp or to put fp (see above), �nd-or-put � in the worst case �

traverses the probing sequence twice now. The �rst loop (line 2 to 16 of algorithm 9)

searches for a match of fp in t . If successful, �nd-or-put simply returns success (alg. 9

line 4). Otherwise, the loop continues to search the alternative positions de�ned by the

probing sequence.

If the search remains unsuccessful, �nd-or-put directs search to external storage (alg.

9 line 17 to 22) where it runs binary search (compare section 3.3.3). If the binary search

also fails to produce a match, the �ngerprint is known not to be a member of Cproto .
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The second while loop thus attempts to put fp into t (see excerpt 4 above). However,

the while loop reuses work of the �rst loop. The �rst loop determines the �rst open

position and stores its relative index in the probing sequence (alg. 9 line 6 to 12). With

external storage, an open position is either an empty one or a position where its occupant

�ngerprint has the m-bit set (see section 7.1.2).

When the �rst loop �nds no open position within index ..(L−1), the second while loop

terminates immediately because of its index = L check on line 24 of alg. 9: The worker

hit the upper bound of the probing sequence and requests eviction correspondingly.

Algorithm 9 : Find-or-put with external storage
1 chkSnc : if (external 6= 〈〉){
2 cntns : while (index < L){
3 if (isMatch(fp, idx (fp, index ), table)){
4 goto pick Match/Success

5 }else {
6 if (isEmpty(idx (fp, index ), table)){
7 expected := minimum(expected , index ) ;
8 goto onSnc ;
9 }else {
10 if (isMarked(idx (fp, index ), table)){
11 expected := minimum(expected , index ) ;
12 }
13 index := index + 1
14 }
15 }
16 } ;

17 onSnc : if (containsElem(external , fp)){
18 goto pick Match in external storage.

19 }else {
20 index := expected ;
21 expected := − 1 ;
22 } ;
23 } ;

24 insrt : while (index < L){
25 See Insertion above.

26 }

Workers never hold locks despite the fact that �nd-or-put checks t and the exter-

nal storage. Thus, �nd-or-put remains lock-free even with external storage. If two
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�nd-or-put operations of the same �ngerprint are interleaved, atomic CAS guarantees

consistency: One worker will successfully put the �ngerprint while the other �nds the

match. The external storage is read-only when the workers execute �nd-or-put opera-

tions. Hence, the �rst loop can be seen as a �nd in a read-only in-memory cache for the

external storage, which � i� unsuccessfully � is followed by a actual external lookup.

7.1.4. Consecutive Evictions

Consecutive evictions are identical to the initial eviction, except that the existing ex-

ternal storage has to additionally be merged with the sorted t . Since both locations

are sorted in the same (ascending) order, the merge is trivial. However, each eviction

requires to re-merge with the complete external storage. Let N be the average num-

ber of �ngerprints evicted, the �rst eviction unsurprisingly requires N and the second

eviction 2N writes respectively. Starting with the third eviction, writes grow up to 3N .

Generally, the m-th eviction needs m ×N writes. While asymptotically being linear, it

is a noticeable constant factor.

7.2. Parameter Selection

All parameters of the algorithm discussed above are determined by the amount of space

dedicated to the in-memory table t . The only exception is the length of the probing

sequence L, which has to be selected with two goals in mind:

1. First, the average throughput � even under a high load factor α � has to exceed

the throughput with external lookups. The performance gap between primary

(table t) and external storage is known to be at least one order of magnitude. We

even expect it to further widen in favor of t . Thus, we need not concern ourselves

with this goal, for as long as the throughput does not degrade more than an order

of magnitude.

2. Secondly, the table's load factor α should be maximized to achieve a high utilization

util . The load factor α is proportional to L: A larger value for L on average leads

to a higher α. Leaving L unrestricted, we can achieve a load factor of α = 1. On

the other hand, L is also proportional to the disorder dis of �ngerprints in t . In

section 3.4.1 we argue, that dis has to be su�ciently small for Insertion Sort

to accomplish optimal O (n) asymptotic complexity. Thus, �nding the sweet spot
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Figure 7.2.1.: Throughput with open addressing drops with increasing load factor, the
disorder is inversely proportional

for L is an optimization problem with two objectives, namely maximizing α and

minimizing dis .

Since we cannot determine the optimal L analytically, we approximate L from empirical

data. The implementation, with which the data has been obtained, is discussed in chap-

ter 8. However, there is no reason why the value of L is speci�c to our implementation.

The relationship of L and α is in the data.

The graphed data 7.2.1 shows, that the maximum disorder dis of �ngerprints (see

section 3.4.2) starts to skyrocket at α ' 0.8. On the other hand, for α ≤ 0.8, the

value of dis growths slowly. Conversely, with a load factor of α ' 0.8, the throughput's

degradation is negligible.

In order to account for an error margin in the empirical data and to bias the imple-

mentation to higher load factors, the maximum length of the probing sequence has been

set to be L = 512.2

2Users can elect to overwrite L with di�erent values such as 128 by setting the system property
-Dtlc2.tool.fp.O�HeapDiskFPSet.probeLimit=128.
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7.3. Correctness

The algorithm described above and listed fully in B.2 has been model checked with TLC

for various (non-trivial) models. All models have a four-dimensional parameter space,

consisting of the constants K , L, fps and Writer .3 The constant K corresponds to the

table size of t and L to the length of the probing sequence (section 7.1). The constant

fps de�nes the �ngerprint universe U (see section 3.3). The constantWriter is de�ned to

be a set of writers, synonymous with the workers executing the �nd-or-put and eviction

operations.

The Writer set of model values has been declared to be a symmetry set. The speci�-

cation and the checked properties are symmetric, s.t. a writer's identity is not relevant.

The properties below and the speci�cation do not refer to individual writers. Declaring

the set to be symmetric, reduces the number of distinct states.

The speci�cation declares an auxiliary variable called history , which is used by the

properties below. This set records the history of �ngerprints, which have been put into

the seen set C by the Writer , thus history ⊆ fps . The history variable does not appear

in the implementation. Abadi and Lamport [1991, page 20�] introduce the concept of

history variables.

We de�ned and checked the following safety properties and liveness properties, which

are listed in algorithm 10. Additionally, TLC was instructed to check for deadlocks. We

�rst discuss the safety properties, before we introduce the liveness properties:

Contains Contains asserts, that all �ngerprints in history are always found in C within

their probing sequence, whereas the �ngerprints in subset fps \ history are not

allowed to be members of C (alg. 10 line 5). Contains thus guarantees, that

the algorithm is indeed invariant under in-place sort (compare section 7.1). As

discussed above, swapping two �ngerprints does not occur atomically due to the

lack of CASN. During eviction, a �ngerprint fpa ∈ history disappears from table t

temporarily in states where fpa is swapped with another �ngerprint fpb ∈ history .

Thus, for Contains to hold under eviction, the contains operator checks Insertion

Sort's variable to temporarily store fpa in the last disjunction. This variable is

called lo in algorithm B.2.

Duplicates Duplicates checks that t never contains two or more identical �ngerprints

(alg. 10 line 11). Note, that �ngerprints are de�ned s.t. empty /∈ fps . Multi-

ple empty table positions are not considered duplicates. Contrary to Contains ,
3empty is de�ned to be a model value which is distinct from all other constants.
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Algorithm 10 : Safety properties and liveness properties of Open Addressing spec-
i�cation

1 contains(f , t , seq , Q)
∆
= ∨ ∃ i ∈ 0 . . Q : isMatch(f , idx (f , i), t)

2 ∨ ∃ i ∈ 1 . . Len(seq) : seq [i ] = f
3 ∨ if f ∈ (Image(lo) \ {0}) then evict = true

4 else false

5 Contains
∆
= ∧ ∀ seen ∈ history :

6 contains(seen, table, external , L)
7 ∧ ∀ unseen ∈ (fps \ history) :
8 ¬contains(unseen, table, external , L)
9

10 FindOrPut
∆
= evict = false

11 Duplicates
∆
= FindOrPut =⇒ let sub

∆
= SelectSeq(table, lambda e : e 6= empty)

12 in if Len(sub) < 2 then true

13 else ∀ i ∈ 1 . . (Len(sub)− 1) :
14 ∀ j ∈ (i + 1) . . Len(sub) :
15 abs(sub[i ]) 6= abs(sub[j ])

16

17 isSorted(seq)
∆
= let sub

∆
= SelectSeq(seq , lambda e : e 6= empty)

18 in if Len(sub) < 2 then true

19 else ∀ i ∈ 1 . . (Len(sub)− 1) :
20 sub[i ] < sub[i + 1]

21 Sorted
∆
= isSorted(external) ∧ isSorted(newexternal)

22

23 Termination
∆
= 3(∀ self ∈ ProcSet : pc[self ] = �Done�)

24

25 Complete
∆
= 32(history = fps)
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Duplicates does not hold under eviction. A �ngerprint in history can occur in t

twice due to non-atomic swaps.

Sorted The Sorted property veri�es, that the external storage is always strictly sorted

in (ascending) order (alg. 10 line 21). During eviction, the two variables external

and newexternal represent the existing and the currently being written �le.

The remaining properties are liveness properties:

Termination Termination � automatically generated by the PlusCal to TLA+ tran-

spilation (see section 2.2.1) � guarantees, that all Writer processes eventually

terminate, i.e. reach the implicit �Done� label of the PlusCal algorithm (alg. 10

line 23).

Complete The Complete liveness property mandates that eventually all �ngerprints ∈ fps

are members of the seen set C (alg. 10 line 25).

Due to resource constraints, we generally restricted model checking time to maximally

24 hours per model run. We de�ne non-trivial model parameter combinations, s.t.:

� More than a single writer, thus |Writer | > 1

� At least one eviction to happen, thus |fps| > K

� Su�cient disorder, thus L > 1

Table 7.1 shows the parameters of the veri�ed models and the corresponding model

checking time. All models were checked on Amazon EC2 r3.8xlarge instances (see sec-

tion 9.1 for details). Checking of the liveness graph has been deferred to a single, �nal

check.4 No violations have been found for the stated safety properties and liveness

properties.

The speci�cation does not seem to exhibit state space explosion for an increase of the

K and L parameter values. The reason for this phenomenon is, that larger values for K

and L, under a �xed fps , result in a lower load factor α. Consequently, fewer states are

necessary to �nd-or-put the elements of fps into table t .

To speed up model checking, a TLC module overwrite (compare section 2.2.3) for the

shiftR operator (see algorithm 11 line 1 to 3) was active. To do �oating point arithmetic,

we also revert to a TLC module overwrite for the rescale operator (line 5 to 21). TLC

4The Java property �tlc2.tool.liveness.Liveness.�nalCheckOnly� forces TLC to check the liveness prop-
erties only once after the complete state graph is constructed.
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K L Writer fps TimeOverall TimeLiveness Distinct States Depth
5 2 {w1,w2} 1..8 9:25 02:24 6 807 304 203
5 3 {w1,w2} 1..8 7:05 00:59 5 016 426 175
5 4 {w1,w2} 1..8 7:27 01:37 5 040 917 140
5 2 {w1,w2} 1..9 01:19:00 15:16 46 225 095 219
5 3 {w1,w2} 1..9 56:38 10:15 29 542 762 189
5 4 {w1,w2} 1..9 45:54 07:38 23 075 716 195
5 2 {w1,w2} 1..10 11:26:00 01:58:00 316 862 498 269
5 3 {w1,w2} 1..10 08:11:00 01:13:00 198 961 652 248
5 4 {w1,w2} 1..10 05:53:00 00:44:44 132 757 645 215
7 2 {w1,w2} 1..9 18:27 03:56 10 870 283 192
7 3 {w1,w2} 1..9 12:46 02:46 7 504 379 203
7 4 {w1,w2} 1..9 14:12 02:44 8 199 637 207

Table 7.1.: TLC model checking times for various parameter combinations

does not support �oating point arithmetic and silently falls back to integer arithmetic

s.t. reals are truncated to naturals.
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Algorithm 11 : TLC module overwrites for shiftr and rescale

1 public stat ic IntValue sh i f tR ( IntValue n , IntValue pos ) {
2 return IntValue . gen (n . va l >>> pos . va l ) ;
3 }
4
5 private stat ic f ina l int minT = 1 ;
6
7 public stat ic IntValue r e s c a l e ( IntValue k , IntValue maxF,
8 IntValue minF , IntValue fp ,
9 IntValue p) {
10 return IntValue . gen ( r e s c a l e ( k . val , maxF . val ,
11 minF . val , fp . val , p . va l ) ) ;
12 }
13
14 stat ic int r e s c a l e ( int maxT, int maxF,
15 int minF , int fp , int probe ) {
16 f loat f a c t o r = (maxT − minT) / ( (maxF − minF) * 1 f ) ;
17 int idx = Math . round ( f a c t o r * ( fp − minF) + minT) + probe ;
18 while ( idx > maxT) {
19 idx = idx % (maxT + 1) + 1 ;
20 }
21 return idx ;
22 }
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8. Realization

"How to program if you cannot." Dijkstra [1988]

8.1. Software Speci�cation

This chapter formulates requirements and constraints towards an implementation of

the lock-free algorithm in chapter 7 for the seen set C . These requirements are to be

seen in addition to the high-level and language independent requirements described in

section 5.2. To reiterate, those (functional) requirements were:

� Hash table with limited operation set, namely �nd-or-put of 64 bit long values

� No support for element removal or table resizing

accompanied by the following nonfunctional requirements:

� Not limited to primary memory

� High memory utilization util

� High average throughput X

� Scales with number of processes (runtime) and available memory (space)

� Correctness

Also, an implementation of the lock-free algorithm has to be usable from Java, thus is

preferably implemented in Java. This requirement stems from the fact that TLC itself

is implemented in Java. More speci�cally, as of today TLC runs on Java 1.7 onwards.

However, an increase to version 1.8 � as lower bound � is acceptable because Java 1.7

has ceased to receive (public) updates since April 2015 [see Oracle, 2015].

Java 1.8 is still restricted to the synchronization primitives as outlined in section 3.1.

In order to implement the algorithm in Java, the implementation can rely on the non-

public API sun.misc.Unsafe (see section 3.1). This API exposes the CAS operation
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for long values and additionally grants direct, unveri�ed and unconstrained access to

and can allocate contiguous blocks of up to 263 bytes of primary memory (compare

section 3.3.2). Despite being located in the vendor speci�c sun.misc namespace, most

Java VM implementations provide this API. In environments where sun.misc.Unsafe

is unavailable for other reasons, TLC will revert to less e�cient heap-based �ngerprint

set implementations.

Above (see 2.2.3), we also stated that TLC targets both, commodity and server hard-

ware. Consequently, an implementation has to be compatible with a variety of hardware

architectures for which a Java VM is available. The most prominent hardware on which

TLC is executed, is the 64 bit version of the x86 instruction set though. Thus, the

implementation can choose to adopt optimizations as long as they have only minor neg-

ative e�ects on other architectures. No additional assumptions or requirements are to

be made towards the hardware architecture.

Given that the implementation is used as part of a model checker � a formal ver-

i�cation tool � the implementation faces has to conform to a high quality standard.

Therefor, it is vital to verify and validate the implementation. Thus, the implementation

has to be modular in order to be testable.

Modularity also achieves maintainability; judging from TLC's long history, we expect

the implementation to be in productive use for several years. The implementation should

be forward compatible with �ngerprints larger than 64 bits, possibly increments of 64

bits.

To summarize the previous paragraphs, the implementation primarily targets scalabil-

ity (runtime and space) followed by performance. Still, correctness is equally important.

Other nonfunctional requirements are: portability, modularity and maintainability.

The functional speci�cation will be given informally. We will implement what is

mathematically a set which we loosely de�ne to be a collection of elements without

duplicates. On top, we restrict the insertable elements to be immutable �ngerprints

and prohibit set members from being removed. Contrary to a mathematical set, the

maximum cardinality of the set is �xed and has to be chosen a priori. An excerpt of the

FPSet Java class � re�ecting the functional speci�cation � is given in the program

listing 12. Its simplicity indicates that the nonfunctional requirements are the non-trivial

part of this implementation.

The implementation will be a subclass of the abstract FPSet base class shown in

program listing 12. The FPSet also serves as the technical interface de�nition for the

implementation.
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Algorithm 12 : The FPSet class as the functional speci�cation of the implementa-
tion

package t l c 2 . t o o l . fp ;

ab s t r a c t c l a s s FPSet {

pub l i c FPSet ( long f i x edCa rd i n a l i t y ) {/* omitted */}

/**
* Returns t rue i f f the f i n g e r p r i n t fp i s in t h i s
* s e t .
*/
abs t r a c t boolean conta in s ( long fp ) ;

/**
* Returns t rue i f f the f i n g e r p r i n t fp i s in t h i s
* s e t . I f the f i n g e r p r i n t i s not in the set , i t i s
* added to the s e t as a s ide−e f f e c t .
*/
abs t r a c t boolean put ( long fp ) ;

}
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8.2. Software Design

Based on the Software Speci�cation and the description of the algorithm in 7.1, we will

next describe the software design of the implementation.

We capture the high-level software design in the (informal) UML component diagram

8.2.1. TLC consists out of three components, which map to the data structures C , S ,T

introduced in section 2.2.3. The diagram can be seen as a technical representation of the

schematic given in �gure 2.2.3 zoomed in on the procedure to generate the state graph.

The implementation � denoted in 8.2.1 by the class OffHeapFPSet � will belong to

the FPSet subcomponent of the TLC component. The OffHeapFPSet must not have

any intercomponent dependencies to guarantee modularity and testability.

The UML class diagram shown in �gure 8.2.2 details the OffHeapFPSet implementa-

tion.1 Its coloring groups related classes to facilitate comprehension.

The OffHeapFPSet is a subclass of DiskFPSet, which in turn is derived from FPSet.

Deriving from FPSet asserts that OffHeapFPSet can act as a distributed �ngerprint set

(see section 2.2.3).

DiskFPSet encapsulates logic related to the disk �le (see section 3.3.3). These methods

have been omitted in the UML diagram though. The numThreads attribute indicates,

that DiskFPSet supports a static number of workers (compare section 2.2.3). The at-

tribute of type Flusher will be discussed below.

The class OffHeapFPSet provides an implementation for the put and contains API

de�ned by FPSet. This implementation in turn invokes the private memLookup and

memInsert methods of OffHeapFPSet. The memLookup and memInsert methods map

directly to the PlusCal excerpt 9 line 2 to 16 and algorithm 4 respectively. We make

use of a LongAdder � available starting with Java 1.8 � in memInsert to reduce

the worker contention by using a distributed counter for the overall table count. A

distributed counter synchronizes on counter reads but avoids synchronization on writes.

OffHeapFPSet implements the wait-free worker synchronization to switch from the

�nd-or-put phase to eviction (see section 7.1.2) with the aid of an AtomicBoolean and

a CyclicBarrier; both provided by Java 1.5. onwards. It thus closely follows the

PlusCal speci�cation in algorithm 5. The AtomicBoolean wraps a volatile boolean

for which it also provides a CAS operation. Worker poll the AtomicBoolean on each

invocation of put and contains to check if an eviction is pending. Once a pending

eviction is detected, a worker waits on the CyclicBarrier which corresponds to the

1Some class names have been abbreviated compared to the actual Java implementation.
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await statement at the waitEv label in algorithm 5. Brooker [2009] con�rms that a

volatile read incurs negligible overhead if the read operation dominates. This is true in

this scenario.

In the implementation, the TLA
+ idx function (compare algorithm 3) is encapsulated

by the Indexer and BitShiftingIndexer, which are aggregates of OffHeapFPSet.

This command pattern [compare Gamma, 1995] decouples the implementation from Off-

HeapFPSet for better modularity and testability. The BitShiftingIndexer command

provides superior performance by avoiding the costly modulo operation i� the size of the

hash table is a power of two. With the command pattern, a conditional on each index

calculation is avoided.

Low-level memory access with sun.misc.Unsafe is wrapped by the class LongArray.

LongArray translates the domain speci�c methods to get and set �ngerprints to low-

level sun.misc.Unsafe calls that manipulate raw memory. The use of raw, unmanaged

memory reduces garbage collection in LongArray to a minimum. Conversely, the imple-

mentation has to manually allocate and free its memory. Additionally, LongArray acts

as a facade to hide sun.misc.Unsafe in anticipation of its replacement with o�cial API

in a future Java release [see Reinhold, 2015]. The method trySet is the CAS equivalent

to set. The method trySet returns true i� the CAS operation succeeds. LongArray is

an aggregate of OffHeapFPSet.

Following Java's Arrays class approach � a class consisting exclusively of static

methods that operate on or return array instances � LongArrays encapsulates various

static methods that operate on LongArray instances. Most notably is the sort method,

that sorts a LongArray or a range thereof. Sorting a range is used by the Flusher

discussed below. As per the discussion about bounded disorder in section 3.4.1, sort

implements the Insertion Sort algorithm which is parallelizable with the scheme

introduced in section 3.4.2.

In section 7.1.2 we established necessary modi�cations to the Insertion Sort algo-

rithm to skip open and marked positions. However, the modi�cations shall not appear

in our implementation of standard Insertion Sort. In other words, the implementa-

tion in LongArrays must remain a generic implementation of Insertion Sort. Thus,

we introduce the LongComparator functor which is passed as a parameter of the sort

method. LongComparator implements the compare operator initially discussed in algo-

rithm 6. This separation of concerns results in better modularity and maintainability.

Especially, we expect LongComparator to be reusable if Insertion Sort is replaced with

Smoothsort or Timsort. Refactoring the sort algorithm is limited to swapping out
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the Insertion Sort algorithm for a new implementation. The method signature in

LongArrays is not expected to change.

Eviction to external storage is encapsulated by the abstract class Flusher. An in-

stance of Flusher provides a single-method interface to its aggregating class. This

flushTable method triggers the eviction to external storage. Internally, flushTable is

split into two stages which it delegates to the methods prepareTable and mergeNew-

Entries. If required, prepareTable allows subclasses of Flusher to prepare the table

prior to eviction. In case of OffHeapFPSet, this entails sorting the subclasses' internal

data structure � the LongArray. The method mergeNewEntries merges the table in

primary memory with the linearly sorted input �le located on external storage into

the output �le.2 In order to hide the state inherent in traversing the LongArray, the

standard iterator idiom is applied (see Iterator).

OffHeapFPSet supports a sequential and a concurrent eviction strategy. The Se-

quentialFlusher strategy is chosen when LongArray is su�ciently small and does not

warrant the overhead � i.e. instantiating threads and partitioning the LongArray �

incurred by concurrent eviction. For all larger sizes of LongArray, the Concurrent-

Flusher provides an implementation that is scalable in the number of workers by exe-

cuting eviction collaboratively. It therefor partitions the LongArray instance into ranges

for parallel sorting as discussed in section 3.4.2. In the subsequent mergeNewEntries

stage, the ConcurrentFlusher writes the fully sorted partitions to external storage;

again in parallel. Writing in parallel scales in the number of disks available.

We omit a sequence diagram as documentation of the interaction between the Model-

Checker component and the FPSet component, i.e. the OffHeapFPSet implementation,

because of its apparent simplicity. The behavioral aspects of the OffHeapFPSet are

documented by the TLA+ speci�cation in B.2 instead.

8.3. Implementation

The implementation is included in the master branch of the o�cial TLA+ repository

[see Lamport et al., 2017].

2input and output are the parameters of the mergeNewEntries method.
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8.4. Veri�cation and Validation

The conversion of the formal speci�cation in B.2 into Java code is a manual task which

requires due diligence. There are no guarantees, that the Java implementation correctly

implements the PlusCal speci�cation. In order to narrow the gap between the speci�-

cation and implementation, we employed what we believe to be best practices beyond

traditional approaches in software engineering.

The section 7.3 discusses the use of TLC module overwrites to speed up model check-

ing. Besides reducing model checking time, a TLC module overwrite additionally allows

one to model check code snippets of the actual implementation. The rescale TLC mod-

ule overwrite in section 7.3 is the foundation for the idx calculation of the actual Java

implementation of the algorithm. It was copied almost verbatim from the speci�cation

to the implementation.

Using TLC module overwrites is unfortunately impossible for PlusCal sections which

span across multiple labels, e.g. the �nd-or-put operation as a whole.3 Here, we cannot

overwrite sections to derive a correct implementation. Instead we have to manually

convert PlusCal into Java code. While both appear to be syntactically similar, their

semantics di�er. Thus, we manually encode the Java implementation but verify it with

jpf [see Havelund and Pressburger, 2000], to guarantee correctness (compare 2.1.8).

Verifying the implementation is bene�cial to catch errors in the manual conversion. In

our case, it detected a subtle error that intermittently lead to duplicate �ngerprints.

Traditional testing would have been unlikely to detect this error. The overhead to

create the jpf safety properties is minimal, because TLA+ properties can be manually

converted into jpf ones. Obviously, only fundamental sections of the implementation are

veri�ed by jpf. Auxiliary parts of the implementation are not veri�ed. First, auxiliary

code is generally not speci�ed at the abstraction level of TLA+. Secondly, the resulting

size of the state space makes this attempt infeasible. We are also con�dent, to �nd errors

in auxiliary code with traditional validation.

We complemented veri�cation for fundamental code with traditional validation, i.e.

unit and functional testing of auxiliary code. In total, we added 141 unit tests for the

tlc2.tool.fp package. Combined, the tests reach a code coverage in the range of 75%

for OffHeapDiskFPSet and 61% at the package level [SonarQube, 2017]. In addition to

unit testing, the code is equipped with several assertions to document and verify the

pre- and post-conditions and (internal) invariants of OffHeapDiskFPSet.

3TLC module overwritesare limited to stateless TLA+ operators.
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The following chapter 9 presents the results of the validation of the non-functional

requirements, namely scalability and performance. In the scope of this chapter, it is

worth mentioning that the compiled (jitted) code of OffHeapFPSet has been manually

inspected for performance bottlenecks as a result of poor optimizations by the HotSpot

JIT compiler [compare The Hotspot Group, 1999]. No bottlenecks have been found in

a runtime analysis with the aid of JITWatch [see Newland, 2013].
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9. Evaluation

This chapter studies the performance and scalability of the lock-free algorithm proposed

in chapter 7 and its implementation discussed in the previous chapter.

In order for experiments to be repeatable and reproducible, the chapter �rst highlights

the environments on which the experiments were executed and the technical framework

within measurements were collected.

The section 9.2 visualizes the measurements, evaluates the datasets and quanti�es

scalability with USL. In addition, it provides a representative comparison of TLC with

the Spin model checker.

9.1. Methodology

All experiments, except for the dataset corresponding to �gure 4.2.2, were carried out

on Amazon EC2 instances [Amazon Web Services, 2016]. The primary instance type

used was x1.32xlarge, which as of today, is the most powerful instance type available. It

is equipped with 128 cores, provided by four Intel E7-8880 v3 processors. The instance

type has access to 1952 GB of memory. When experiments required less computer power,

we used x1.16xlarge, r3.8xlarge and c3.8xlarge instances. They come with 64 cores and

976 GB main memory, 32 cores and 244 GB memory and 32 cores and 60 GB memory

respectively. The experiment leading to �gure 4.2.2 ran on an IBM Thinkpad T430s

because, contrary to Amazon EC2 instances, it exposes counters for cache misses at the

Linux kernel level.1

The operating system � on which all experiments ran � was Ubuntu Linux 16.04.1

LTS. Instances were provisioned with a script, which is part of Kuppe [2017]. At �rst,

the Java virtual machine corresponded to version 1.8.0 101-b13 and later to 1.8.0 111-

b14. The switch was made for security reasons. We are not aware of changes that would

in�uence our experiments.

1Since then, performance measurement counters have been made available in EC2 [see Gregg, 2017].
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Instead of micro-benchmarks, we opted for long running experiments to reduce the

impact of startup times. Still, we modi�ed TLC to collect �ne grained execution times

to exclude any startup time. We ran each experiment three times to be less prone to

competing workloads at the OS level. Additionally, we had exclusive access to the un-

derlying hardware of the x1.32xlarge and x1.16xlarge instances by requesting dedicated

instances.

Kuppe [2017] contains all datasets, organized in folders which indicate the date and

instance type of each experiment. Each folder also contains the script with which the

experiments were started. The scripts do not require the caller to provide parameters.

All �gures indicate the corresponding dataset as part of their label. When applicable,

a �gure plots the 95% con�dence interval. We removed outliers with a simple eyeball

test, combined with an inspection of the Java Flight Recording for anomalies.

We collected pro�ling data at the Java VM level and speci�c TLC metrics, with the

Java Flight Recording (JFR) tool [see Oracle, 2016]. The authors claim that JFR has

negligible overhead. JFR does not require code modi�cations.

The TLA+ speci�cation used in experiments was Grid5k.tla [Lamport and Kuppe,

2011]. The shape of its state graph matches the well-shaped de�nition in section 4.1.

The speci�cation is part of the o�cial TLA+ repository [Lamport et al., 2017].

All experiments speci�c to the seen set C , measured its raw performance and scal-

ability independent of other parts of TLC. Therefor, we created an arti�cial workload

that resembles the workload of regular explicit state model checking. It is a random set

of longs (�ngerprints), generated by a pseudo random number generator (PNRG). We

used the linear congruential random number generator [compare Knuth, 1997] provided

by java.util.Random, but also experimented with Mersenne Twister and Marsaglia's

xorshift [see Dyer, 2012]. We observed no measurable change in execution time with

either of the three PNRGs. However, it is vitally important to assign each worker its

dedicated PNRG. Concurrent access to a shared PNRG results in high contention, which

distorts measurements.

Another systemic distortion in our test framework surfaced early on. A framework's

loop condition was a comparison of the length K of the seen set C 's internal table t . At

the implementation level, K was maintained by a striped counter. A striped counter can

be incremented without causing contention. Obtaining the current value on the other

hand, requires synchronization of all writers and thus results in signi�cant contention.

We did not observe satisfactory performance and scalability, until we removed both

bottlenecks (shared PNRG and shared counter).
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Figure 9.1.1.: Linux HugePage defragmentation has negative e�ects on scalability

At the Linux operating system, our experiments collided with the memory defrag-

mentation e�orts of the Linux kernel [see Torvalds, 2016a]. Unless we disabled huge

page defragmentation, half of the system load could be attributed to the kernel's de-

fragmentation process. Figure 9.1.1 shows the scalability of Cproto with and without

defragmentation enabled. Additionally, we experimented with the settings for NUMA

balancing [compare Torvalds, 2016c] and tested di�erent CPU scaling governors [see

Torvalds, 2016b]. Neither of those settings had a measurable e�ect though.

Finally, we identi�ed hyper-threading as a source of distortion when worker counts

saturated the instance's number of (virtual) cores. This e�ect is shown in �gure 9.1.2

where the curve deteriorates from linear scalability (dashed line) with increasing worker

counts. It shows the scalability of 1 to 128 independent � thus contention and coherence

free � gzip processes compressing random chunks of data [concept by Fielding, 2014].

This workload can be considered an embarrassingly parallel problem. An x1.32xlarge

instance has 72 physical cores. An r3.8xlarge instance has 20 physical cores.

For the scalability comparison of TLCproto and Spin, we used Spin's current release

[Holzmann, 2016]. We ran the comparison on Lamport's Bakery algorithm and obtained

the TLA+ speci�cation from Lamport [2015a] and the Promela speci�cation from
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Figure 9.1.2.: Scalability degradation with hyper-threading exempli�ed on independent
gzip processes

Kobayashi [2008]. Both models declare the number of processes to N = 5.

In order to make Spin and TLCproto comparable, we compiled Spin with the -DBFS

PAR �ag. This �ag causes Spin to execute its BFS algorithm. We manually determined

the size for Spin's set of �ngerprints � what we call C � to be 232. By default, Spin

can maximally use 63 cores. All experiments were carried out on x1.32xlarge instances.

9.2. Results

As a preliminary result we expected � judging from the amount of test framework opti-

mizations and OS tuning required (see previous section 9.1) � the new implementation

to provide better performance and scalability than Clegacy and Cstripe . The legacy imple-

mentations show no speedup Z under increasing worker counts (compare section 4.1).

This section will give a quanti�ed view to substantiate this assumption.
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Figure 9.2.1.: Scalability of naïve parallel sort with bounded disorder

9.2.1. Seen Set

The Clegacy and Cstripe implementations do not support concurrent eviction. Eviction is

a sequential implementation for both sorting and writing (compare section 7.1.2). Thus,

it is pointless to compare Cproto to the legacy implementation. However, the graph 9.2.1

documents the scalability of Cproto with its implementation of naïve parallel sort under

bounded disorder. The USL (see section 3.2) predicts scalability to peak at 37 workers.

We partially attribute this number to the e�ects of hyper-threading as discussed in the

previous section 9.1. Naïve parallel sort does neither exhibit contention nor coherence.

Combined with Insertion Sort, it even provides optimal cache locality. The load

factor of table t was chosen to be α ' 0.8 in accordance with section 7.2. We did not

measure the scalability of parallel writes.

Shifting the focus from eviction to the performance and scalability of the �nd-or-put

operation, we compare Cstripe to Cproto . The performance of Cstripe and Cproto with a

single worker is displayed in box plot 9.2.2. The median throughput of Cproto is on

average 25% better than that of Cstripe . In addition, the plot reveals a larger variability
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Figure 9.2.2.: The new Cproto provides superior throughput and lower variance over Cstripe

in Cstripe compared to Cproto as indicated by the quantiles.2 The plot 9.2.2 omits outliers.

The graph 9.2.3a shows the scalability of the �nd-or-put operation for Cstripe . First and

foremost, the wide 95% con�dence interval, indicated by the gray area, grabs attention.

The widening interval can be attributed to the dynamic array allocation and its related

garbage collection during the execution of the �nd-or-put operation (see section 3.3.2).

Likewise, dynamic allocation and garbage collection partially explains the overall un-

satisfactory speedup. Combined with the slowdown attributed to coherence as a result

of lock-striping (compare section 4.2), the speedup not only peaks at 40 workers, but

generally never exceeds an order of magnitude. Linear speedup, indicated by the dotted

line, ends at 4 cores.

Graph 9.2.3b displays the scalability plot for Cproto . The implementation exhibits a

narrow 95% con�dence interval, which we assume to be within the range of OS level noise

and benchmark inaccuracy. The USL predicts scalability to peak at 400 workers; an

order of magnitude higher compared to Cstripe . Similarly, the speed almost increases

linearly and thus exceeds that of Clegacy by an order of magnitude.

2The box represents the middle 50% of the data. Thus, the box edges are the 75th and 25th percentiles.
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Figure 9.2.4.: Coherence and contention prediction for Cproto up to 1600 processes

Using theUSL to predict the scalability of Cproto for higher numbers of workers, reveals

increasing coherence. Starting at 400 processes, the plot shows diminishing returns

for additional processes. At 1600 processes, coherence is the dominant contributor to

runtime (see bar plot 9.2.4). To what extend this prediction is related to hyper-threading,

should be clari�ed by running benchmarks on machines with larger core counts.

9.2.2. Parallel TLC

Next we expand the perspective to TLCproto . In contrast to the previously shown scala-

bility of TLClegacy (see graph �gure 4.1.1), the graph in �gure 9.2.5 displays signi�cantly

higher scalability with a predicted peak at 119 workers. This improvement is close to

an order of magnitude over TLClegacy , which peaks at 16 workers. Similarly, comparing

the absolute speedup, TLCproto improves by more than an order of magnitude from

Zlegacy & 2.2 to Zproto . 60.

Lastly, we measure how TLCproto stacks up against Spin. The �gure 9.2.6 shows that

TLCproto achieves a higher speedup than Spin and predicts TLCproto to scale up to

139 workers. This number is in line with the predication for the Grid5k speci�cation

(see previous paragraph). However, TLC's absolute speedup is lower compared to the
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Grid5k speci�cation. Spin's scalability is predicted to peak at 73 cores and its speedup

below that of TLCproto . For review, we privately sent our results to the author of Spin,

who approved of our measurement methodology [Holzmann and Kuppe, 2017].

All datasets are available on the attached CD-ROM. Additionally, the datasets can

be found at Kuppe [2017].
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10. Conclusion

This thesis contributes to the research on multi-core scalability of explicit state model

checking. It presents a novel, lock-free hash table algorithm for the set of seen states

commonly found in explicit state model checkers. The algorithm achieves a high space

utilization through the use of open addressing. Contrary to other algorithms found

in today's model checkers, the algorithm supports the extension of the hash table to

external storage, i.e. disks. It is thus not memory bound, which allows the TLC model

checker to verify otherwise intractable models.

All operations of the algorithm run in parallel, even the extension to disk. For that,

we devised a parallel sorting scheme, that can be used universally, i� the data to be

sorted has a bounded disorder. The scheme achieves linear scalability.

We provide a formal PlusCal speci�cation of the algorithm. We thus partially deliver

on the task set out by Dijkstra [1988], to formally specify a program and proof its

correctness. We verify correctness of �nite models with the TLC model checker, but

lack a rigorous proof with e.g. TLAPS.

The thesis includes a Java implementation of the algorithm, which is freely available

under a permissive license. We consider it to be production-ready. The core parts of

the implementation have been checked with jpf. Auxiliary parts have been unit tested.

Benchmarks demonstrate � and the universal scalability law even quanti�es � the

implementation's competitive performance and scalability.

Widening its focus with regards to scalability of explicit state model checking, the

thesis shifts its attention to the two other primary data structures present in model

checkers: the set of unseen states and the forest to construct counterexamples. The thesis

argues, that a shared-nothing design for the two data structures eliminates contention

and coherence and thus increases scalability. It includes prototypic implementations of

both data structures.

Combining all three implementations into TLCproto , the thesis conducts benchmarks

at the model checker level, which reveal superior performance and scalability compared

to its former version TLClegacy , as well as current Spin. In short, TLCproto scales to
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computers with hundreds of cores and terabytes of memory.

We show, that performance related optimizations at the OS level, have a negative

impact on TLC's performance and scalability. We list tuning parameters, which remove

the performance and scalability degradation. The tuning parameters have since been

incorporated into Cloud Distributed TLC.

As a side e�ect of TLC's scalability analysis and related to software engineering in

general, we identify two convincing arguments in favor of the lock-free programming

pattern.

First, the popular approach of lock-striping � to eliminate lock contention � does

not scale. Our experiments show, that an increase in the number of locks, leads to what

can be described as lock coherence.

Secondly, the scalability results presented as part of this thesis con�rm that (existing)

programs can bene�t from today's massive multi-core computers, if key parts of the

program are redesigned to be lock-free. An increase in performance and scalability can

be accomplished.

However, the inherent complexity of the lock-free programming pattern makes rea-

soning about programs more di�cult. Generally, we believe that the ever increasing

complexity of computer programs has to be matched by the wider adoption of formal

methods. In this regard, the thesis con�rms the practicality of a speci�cation-driven, it-

erative development process. Additionally, it provides an outlook into how TLC module

overwrites and a combination of TLA+ and jpf contribute to a more robust (manual)

translation from a high-level speci�cation to a corresponding implementation.
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11. Future Work

We consider the algorithm and implementation for the seen set C to be production-

ready. Still, we see areas for future research. The naïve parallel sort scheme introduced

in section 3.4.2 requires two passes. Under the assumption of a uniform distribution of

�ngerprints even under high load factors, the second pass � the merge phase � can be

skipped, if unoccupied table positions could be found e�ciently (see 7.1.2 on page 56).

Secondly, the external storage lookups have been identi�ed as a performance bottle-

neck (see section 3.3.3). To alleviate this problem, a bloom �lter (compare section 6.2)

placed in front of the external storage, would reduce the number of lookups for non-

existing �ngerprints.

Similarly, section 7.1.4 discusses the signi�cant constant factor of the eviction com-

plexity, which implies that the algorithm does not scale with the number of evictions.

A di�erent external storage layout may be able to reduce the constant factor.

We expect the algorithm to generally be forward compatible with 128 bit �ngerprints

as requested in section 5.2. Yet, we believe compatibility to require DCAS support

(compare section 3.1.1) at the Java language level.1

Lastly, a reduction in the space requirement of the hash table can be accomplished,

if �ngerprints are Cleary compacted [compare Cleary, 1984, van der Vegt and Laarman,

2012]. The LP collision resolution and the bounded disorder allows the complete �n-

gerprint to be reconstructed from its su�x stored in table t and the su�x's position in

t .

Expanding our perspective to TLC, section 9.2 shows that the prototypic implemen-

tation for the unseen set S and the forest � both following a shared nothing design

as discussed in section 4.1 � increase TLC's overall scalability up to an order of mag-

nitude. These two prototypes have to be formally speci�ed, veri�ed and implemented

once a re-balancing algorithm for the unseen set S has been envisioned. Preliminary

considerations see the re-assignment of the unseen set S 's disk pages to idle workers as

1An e�cient 128 bit �ngerprint implementation needs user-de�ned primitive types as proposed in Rose
[2015].
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the most e�ective re-balancing approach. Nevertheless, the work of Holzmann [2012] is

certainly of interest here. Also related to the unseen set S are the savings inherent in

state compression. Yu et al. [1999] presented preliminary yet promising results. These

results should be revisited, once load balancing of the unseen set S is researched.

Improved scalability of liveness checking has not been the scope of this thesis. Yet, as

apparent from the results in table 7.1, checking liveness properties is a major contributor

to the overall model checking time. The primary reason being the sequential search for

strongly connected components [compare Tarjan, 1972]. A prototype [see Kuppe, 2015]

of a concurrent algorithm proposed by Tarjan [2015], showed unsatisfactory results;

primarily due to high contention as a result of locking. In the light of the performance

and scalability gains demonstrated in this thesis, the prototype might exhibit reduced

contention when implemented with the lock-free programming pattern.

A reduction of the size of the liveness graph is achievable, if TLC's algorithm for sym-

metry reduction would be enhanced to fully handle the veri�cation of liveness properties.

Unrelated to TLC's scalability, it would be worthwhile to explore the connection

between the shape and the size of a speci�cation's state graph, to its implementa-

tion's performance and scalability characteristics; also requested by Newcombe [2014].

The existence of such connections, would not only shorten the time consuming task of

running scalability benchmarks, but � more importantly � allow to short-circuit the

speci�cation-driven development process discussed above. Likewise, we believe the study

of TLC module overwrites (see section 7.3) at the PlusCal language level to be valuable.

This feature would make a translation of a PlusCal speci�cation, to a corresponding

implementation, less error prone.

Both features would bring us one tiny step closer to shifting programing from being

an art to being a science, as requested by Dijkstra [1988].
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Acronyms

BFS breath-�rst search, Glossar: BFS

CAS Compare and Swap, Glossar: CAS

DFS depth-�rst search, Glossar: DFS

LP Linear Probing, Glossar: LP

LTL Linear-Time Temporal Logic, Glossar: LTL

NUMA Non Uniform Memory Access, Glossar: NUMA

OA Open Addressing, Glossar: OA

SC Separate Chaining, Glossar: SC

TLA+ Temporal Logic of Actions, Glossar: TLA+

TLAPS The TLA+ proof system.

TLA Temporal Logic of Actions, Glossar: TLA

TLClegacy TLA Checker, Glossar: TLClegacy

TLCproto TLA Checker, Glossar: TLCTLCproto

TLCstripe TLA Checker, Glossar: TLCstripe

TLC TLA Checker, Glossar: TLC

USL Universal Scalability Law, Glossar: USL

PlusCal PlusCal, Glossar: PlusCal
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Glossary

Clegacy The seen set C with SC.

Cproto The lock-free seen set C with OA.

Cstripe The seen set C with SC and lock-striping.

BFS Breadth-�rst search is an algorithm to traverse trees or graphs. A vertex's siblings

are explored before its childs.

CAS Compare and Swap is a hardware synchronization primitive that reads a memory

location and only writes a new value i� the read returned an expected value.

DFS Depth-�rst search is an algorithm to traverse trees or graphs. A vertex's childs

are explored before its siblings.

DiVinE DiVinE is an explicit state model checker for real-world programming lan-

guages.

Insertion Sort Insertion Sort is an adaptive and stable sorting algorithm. It supports

sorting in-place and has an O(n) best-case runtime complexity which it achieves

on almost sorted data (bounded disorder). With bounded disorder, its locality

allows it to be parallelized easily.

Java Java is a general purpose computing language.

LP Linear Probing is a possible sequence with Open Addressing.

LTL The Linear-Time Temporal Logic is a temporal logic proposed by Pnuelli for the

formal veri�cation of programs. It has a richer set of temporal operators compared

to TLA.

LTSMin LTSMin is a language independent model checker.
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NUMA A hardware architecture with memory access times depending on theprocessor

proximity.

OA Open Addressing is a collision resolution strategy used in Hash Tables.

SC Separate Chaining is a collision resolution strategy used in Hash Tables.

Spin Spin is an explicit state model checker.

TLA+ The Temporal Logic of Actions is a formal speci�cation language.

TLAPS The TLA+ proof system.

TLA The Temporal Logic of Actions is the mathematical foundation to TLA+. It is

used to describe behaviors of concurrent systems.

TLC TLC is an explicit state model checker for the TLA+ speci�cation language. It is

written in Java.

USL The universal scalability law is mathematical model to quantify scalability.

jpf Java Path�nder is an explicit state model checker for Java byte code.

sun.misc.Unsafe sun.misc.Unsafe is a vendor speci�c API which exposes the CAS

operation to Java applications.

action An action is a relation between a pair of states.

action predicate An action predicate is a boolean valued expression on two states s,t,

where t is a successor to s.

behavior A behavior is an in�nite sequence of states.

bucket SC collision resolution stategy resolves collisions by storing colliding elements

in a collision bucket.

cache line A cache line is a �xed sized memory region copied from primary memory to

a cache.

cache miss A cache miss occurs when a cache line has to be fetched.

coherence Coherence is a measurement to maintain a system's consistency.
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collision A hash table collision occurs when two or more elements are hashed to the

same index.

concurrent system A concurrent system can execute multiple tasks at the same time.

consistency model A consistency model allows one to reason about the order of oper-

ations in a concurrent system.

contention A mutual exclusive resource, such as a variable exhibit contention, when

multiple processes access it concurrently.

counterexample A counterexample is a behavior that violates a safety property or

liveness property ϕ, such that the bahvior satis�es ¬ϕ.

disjoint access parallel A set of processes can independently make forward progress if

they access disjoint memory regions.

disk-based model checking Disk-based model checking is capable of checking model

sizes exceeding the size of primary memory.

embarrassingly parallel problem An embarrassingly parallel problem is contention or

coherence free and therefor gains ideal speedup from parallelization.

explicit state model checking Glossar:

�nd-or-put An composite operation of a hash table to insert an element unless it is

already present.

�ngerprint A �ngerprint uniquely identi�es a state.

�ngerprint set Glossar: seen set C

forest The (state) forest T is used to construct the counterexample.

forward progress Forward progress means a process is not contended and makes progress

towards its goal.

hash table An associative array which maps keys to values.

liveness property A liveness property is a property that is true eventually, perhaps

once or multiple times.
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load factor A measurement to indicate the number of elements stored in the hash table

relative to its size.

lock A lock achieves mutual exclusion of two or more processes to a shared resource.

lock-freedom A concurrent system is said to be lock-free, i� no process can block other

processes from making forward progress.

lock-striping Lock-striping is a programming pattern where n locks guard a shared

resource partitioned in m partitions with n<=m.

model checker An (explicit state) Model Checker exhaustively and automatically checks,

if a model meets a formal speci�cation.

model checking problem The model checking problem answers the question if a sys-

tem adhers to its speci�cation.

next state relation A next state relation is a left-total mapping from states to states.

PlusCal PlusCal is an algorithm language and a dialect of TLA+ geared to replace

informal pseudo-code. It can be checked with TLC

primed variable A primed variable denotes the variable's assigned value in the successor

state.

safety property A safety property is a property that is always true.

scalability A concurrent system is scalable, if its throughput increases when resources

are added.

seen set C The seen set C maintains the set of explored states.

state A state is an assignment of values to variables.

state graph A state graph is a directed cyclic graph. A node represents a state and an

arc represents a transition.

state predicate An state predicate is a specialized action predicate on a single state.

state queue Glossar: unseen set S
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state space explosion State space explosion is the combinatorial blowup of the state

space.

successor The state t is a successor state of state s, i� there is a transition from s to t.

throughput A measurement for the amount of work a concurrent system gets accom-

plished within a time interval.

TLA Toolbox The TLA Toolbox is the integrated development environment for TLA+.

TLC module overwrite With a TLC module overwrite, a user can implement a TLA+

operator in Java.

transition A transition is a mapping from a state s to a successor state t.

unseen set S The unseen set S maintains the set of newly generated, unexplored states.

utilization Utilization util is a quality measurement which quanti�es the e�ctive usable

space of a hash table .

worker In TLC, a worker is a thread running state exploration.
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A. Language Constructs

This section introduces those TLA+ and PlusCal language constructs used in the spec-

i�cations below, which we believe most readers to be unfamiliar with. This list neither

attempts to be exhaustive nor tries to rigorously specify the syntax or semantics of

the TLA+ and PlusCal languages constructs. Instead, we de�ne the subset required to

understand the speci�cations below. We leave the complete and rigorous formal speci�-

cation to the canonical literature on TLA+ and PlusCal by Lamport [1994, 2003, 2009,

2014].

A TLA+ speci�cation appears in a module �le, which de�nes the scope of the speci-

�cation. PlusCal is only allowed to appear nested inside a comment of a TLA+ module

�le. The keyword algorithm indicates the beginning of the PlusCal code. The Plus-

Cal translator, transpiles PlusCal code into TLA+, which is directly inserted after the

comment containing the PlusCal. We start with TLA+:

MODULE M Indicates the beginning of the declaration of module M .

EXTENDS P ,Q Makes the TLA+ de�nitions in module P and Q available to the cur-

rent module. Integers, Sequences, and FiniteSets are standard modules of

TLA+ bundled with TLC.

CONSTANT id1, id2 A declaration of constants de�ned by the model.

LET id , exprlet IN exprin Locally de�nes the identi�er id to be the expression exprlet .

The identi�er id can then be used in exprin .

CHOOSE s ∈ S : P(s) Deterministically selects an element from the set S , for which P

holds. If P holds for more than one element of S , it is unde�ned, which one

exactly is selected. However, it is guaranteed to always be the same element.

If P holds for none of the elements in S , the value of the complete CHOOSE

expression is unspeci�ed.
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∧ A

∧ ∨ B

∨ C

Parenthesis free, but indentation signi�cant variant of A ∧ (B ∨ C ).

Temporal Operators:1

2P Always, requiring the property P to hold always.

3P Eventually, de�ned to be ¬2¬P .

32P Eventually the property P will always hold.

Sets:

{} The empty set.

UNION S The set of all elements in the set of sets S , e.g. UNION {{1, 2} , {2}} =

{1, 2}.

SUBSET S A set of all subsets of set S , including S itself and the empty set. In other

words, the powerset of S .

Cardinality (S ) An operator de�ned by the FiniteSets standard module which returns

the cardinality of the set S .

Functions:

[a 7→ 42] A function, whose domain is {a} and whose image is {42}. Function appli-

cation is written as f [a]. A function is di�erent to an operator, in that its

domain is a set (compare operator Cardinality (S ) whose domain is a set of

sets). A function can be assigned to a variable.

DOMAIN fcn The domain of a function fcn, e.g. DOMAIN [a 7→ 42] = {a}.

[s ∈ S 7→ 42] A function whose domain is the set S and whose image is {42}. If S

happens to be the set N \ {0}, in programming languages this would be

considered a one-indexed array with all elements set to 42. In TLA+, such

a function is called sequence.

〈1, 2, 3〉 A sequence of the elements 1, 2, 3.

1See Manna and Pnueli [1995, p. 42�] for a formal introduction of temporal logic operators.
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〈〉 The empty sequence.

1..3 The sequence of integers from 1 to 3, thus 1..3 = 〈1, 2, 3〉.

A ◦ B The concatenation of the sequence A with the sequence B . For example,

〈1, 2, 3〉 ◦ 〈3, 4, 5〉 = 〈1, 2, 3, 3, 4, 5〉

[S → T ] The set of functions, that map an element in set S to an element in set T .

E.g.

[{2, 3} → {4, 5}] =

{[2 7→ 4, 3 7→ 4] , [2 7→ 4, 3 7→ 5] , [2 7→ 5, 3 7→ 4] [2 7→ 5, 3 7→ 5]}

Head (seq) The Head operator returns the �rst element of the sequence seq .

Tail (seq) The Tail operator returns the sequence seq without the Head (seq) element

of seq .

Len (seq) The Len operator returns the length of seq , i.e. the number of elements in

seq .

Lamport [2009] introduced PlusCal as executable pseudo-code. Thus, in contrast to

TLA+, control �ow in PlusCal is made explicit; just like in other imperative program-

ming languages.

algorithm Keyword to mark the beginning of an algorithm written in PlusCal code

inside a TLA+ comment.

variables var = val ; The variables keyword begins the de�nition of a set of variables and

their initial values. The variables declaration following algorithm, declares

the global variables of the PlusCal speci�cation. E.g. variables a = 42;

assigns the variable a the initial value 42. The semicolon terminates the list

of variable declarations.

var := val Assigns the value val to the variable var at the current state. E.g. a := 23

assigns 23 to var in a state (see labels below). The variable var has to be

declared within a variables declaration before.
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procedure proc . . . {body} The declaration of a procedure identi�ed by proc. A procedure

can have its own set of variables de�ned by the variables statement imme-

diately following the procedure declaration. body re�ects the block of code

executed by the procedure.

call proc Begins execution of the procedure proc, similar to other imperative program-

ming languages. Once proc terminates, control �ow returns to the caller.

process (p ∈ S ) {body} Keyword to indicate the beginning of a process declaration in a

concurrent algorithm. The p ∈ S causes the creation of a process for each

element p of S . A variables statement appearing inside a process, declares

the set of variables visible within the scope of the process. A fair process

guarantees to make progress if possible.2 Without a process declaration, a

PlusCal speci�cation describes a sequential algorithm.

await cond Suspends execution of the process in whose scope await is declared, until

cond holds.

with (s ∈ S ) {body} Nondeterministically picks an element of S identi�ed by s . The

identi�er s can be used in the body of with. However, with is di�erent to

LET described above. Where LET is a local de�nition, a with statement

increases the set of behaviors. Likewise, with is di�erent to CHOOSE , in

that it picks all elements instead of just one. In other words, with regards

to the possible behaviors of the speci�cation, a with results in a behavior for

each element in S .

macro MCR (params) {body} A text macro called MCR, whose declaration is syntacti-

cally expanded in places where it is called.

lbl : . . . A label lbl which groups the block of PlusCal code, that follows lbl up to the

next label, into an atomic operation with regards to parallelism. In other

words, labels control the amount of concurrency allowed by the speci�ca-

tion. The execution of a label, i.e. the block of code grouped by the label,

corresponds to a state in the behaviors of the speci�cation.

2See Apt et al. [1987] for a formal de�nition of fairness.
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B. Speci�cations

The following speci�cations have been printed with the TLA+ Pretty-Printer [Lamport,

2015b]. The Pretty-Printer is a tool to typeset TLA+ and PlusCal speci�cations, which

are written in ASCII, with LATEX. The conversion from ASCII into LATEX might not

always be optimal. We apologize for any formatting problems, such as excessive use of

white-spaces, created by this conversion.

The ASCII pendants of all speci�cations are part of the CD-ROM. The ASCII pedants

also include the transpiled TLA+ which corresponds to the PlusCal code. We omitted

the transpiled TLA+ from the pretty printed speci�cations below, for brevity reasons.

For technical reasons, we also had to omit the surrounding comment into which PlusCal

is normally embedded.

If possible, a reader should study the ASCII pendant of the speci�cations below inside

the TLA Toolbox, which provides syntax highlighting and code navigation.

B.1. Model Checker

This is the complete TLC's algorithm to check safety properties discussed in sec-

tion 2.2.3. We checked the algorithm with TLC on a small set of test inputs, that

is manually de�ned state graphs. In this sequential algorithm we could have omitted

labels completely. We choose to use labels, to improve readability.

module TLCMC

extends Integers , Sequences , FiniteSets

Convertes the given Sequence seq into a Set of all the Sequence's elements. In other words, the image

of the function that seq is.

SeqToSet(seq)
∆
= {seq [i ] : i ∈ 1 . . Len(seq)}

Returns a Set of those permutations created out of the elements of Set set which satisfy Filter.

SetToSeqs(set , Filter( ))
∆
= union {{perm ∈ [1 . . Cardinality(set)→ set ] :

A �lter applied on each permutation
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generated by [S -> T]

Filter(perm)}}

Returns a Set of all possible permutations with distinct elemenents created out of the elements of Set

set. All elements of set occur in in the sequence.

SetToDistSeqs(set)
∆
= SetToSeqs(set ,

lambda p : Cardinality(SeqToSet(p)) = Cardinality(set))

A (state) graph G is a directed cyclic graph.

A graph G is represented by a record with 'states' and 'actions' components, where G.states is the set

of states and G.actions[s] is the set of transitions of s � that is, all states t such that there is an action

(arc) from s to t.

IsGraph(G)
∆
= ∧ {�states�, �initials�, �actions�} = domain G

∧G .actions ∈ [G .states → subset G .states ]

∧G .initials ⊆ G .states

A set of all permutations of the inital states of G.

SetOfAllPermutationsOfInitials(G)
∆
= SetToDistSeqs(G .initials)

A Set of successor states which are not in seen ∪ state. Thus, they are the unseen successors of state.

SuccessorsOf (state, SG , seen)
∆
= {successor ∈ SG .actions [state] :

successor /∈ (seen ∪ {state})}

The predecessor of v in a forest t is the �rst element of the pair �predecessor, successor� nested in a

sequence of pairs. In an actual implementation such as TLC, pair[1] is rather an index into t than an

id of an actual state.

Predecessor(t , v)
∆
= SelectSeq(t , lambda pair : pair [2] = v)[1][1]

constant StateGraph, ViolationStates , null

assume The given StateGraph is actually a graph

∨ IsGraph(StateGraph)

The violating states are vertices in the state graph.

∨ ViolationStates ⊆ StateGraph.states

--algorithm ModelChecker{
variables

A FIFO containing all unexplored states. A simple

set provides no order, but TLC should explore the

StateGraph in either BFS (or DFS => LIFO).

Note that S is initialized with each
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possible permutation of the initial states

here because there is no de�ned order

of initial states.

S ∈ SetOfAllPermutationsOfInitials(StateGraph),

A set of already explored states.

C = {},
The state currently being explored in scsr

state = null ,

The set of state's successor states

successors = {},
Counter

i = 1,

A path from some initial state ending in a

state in violation.

counterexample = 〈〉,
A sequence of pairs such that a pair is a

sequence �predecessor, successors�.

T = 〈〉 ;
{

Check initial states for violations. We could be clever and check the inital states as part of the second

while loop. However, we then either check all states twice or add unchecked states to S.

init : while (i ≤ Len(S )){
state := Head(S ) ;

state is now fully explored,

thus exclude it from any

futher exploration if graph

exploration visits it again

due to a cycle.

C := C ∪ {state} ;
i := i + 1 ;

if (state ∈ ViolationStates){
counterexample := 〈state〉 ;
Terminate model checking

goto trc ;

} ;
} ;
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Explores all successor states until no new successors are found or a violation has been detected.

scsr : while (Len(S ) 6= 0){
Assign the �rst element of

S to state. state is

what is currently being checked.

state := Head(S ) ;

Remove state from S.

S := Tail(S ) ;

For each unexplored successor 'succ' do:

successors := SuccessorsOf (state, StateGraph, C ) ;

if (successors = {state}){
I� there exists no successor besides

the self-loop, the system has reached

a deadlock state.

counterexample := 〈null〉 ;
goto trc ;

} ;
each : while (successors 6= {}){

with (succ ∈ successors){
Exclude succ in this while loop.

successors := successors \ {succ} ;

Mark successor globally visited.

C := C ∪ {succ} ;

Append succ to T and add it

to the list of unexplored states.

T := T ◦ 〈〈state, succ〉〉 ;
S := S ◦ 〈succ〉 ;

Check state for violation of a

safety property (simpli�ed

to a check of set membership.

if (succ ∈ ViolationStates){
counterexample := 〈succ〉 ;
Terminate model checking
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goto trc ;

} ;
} ;

} ;
} ;

Model Checking terminated without �nding a violation.

assert S = 〈〉 ;
goto Done ;

Create a counterexample, that is a path from some initial state to a state in ViolationStates. In the Java

implementation of TLC, the path is a path of �ngerprints. Thus, a second, guided state exploration

resolves �ngerprints to actual states.

trc : while (true){
if (Head(counterexample) /∈ StateGraph.initials){
counterexample := 〈Predecessor(T , Head(counterexample))〉 ◦ counterexample ;

}else {
assert counterexample 6= 〈〉 ;
goto Done ;

} ;
} ;
}

}
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B.2. Open Addressing

Full listing of the PlusCal speci�cation discussed in chapter 7. Ideally each line of the

PlusCal code below would be labeled � with the exclusion of CAS � to correctly re�ect

the desired parallelism. However, this would render model checking of B.2 infeasible, due

to the attached state space increase. Thus, we omitted those labels where the subsequent

block of code is restricted to assignments to variables local to the process or history .

module OpenAddressing

extends Sequences , FiniteSets , Integers

K: The overall number of �ngerprints that �t into the table. fps: The set of �ngerprints to be inserted

into the hash table. empty: An empty (model) value. Used to mark an unoccupied table element.

Writer: The set of processes/threads which insert �ngerprints. L: The probing limit.

constant K , fps , empty , Writer , L

K is a positive natural. emtpy is di�erent from all elements in fps. �ngerprints are natural numbers

and can be well-ordered.

assume ∧K ∈ (Nat \ {0})
∧ ∀ fp ∈ fps : fp ∈ (Nat \ {0})
∧ empty /∈ fps

∧ (2 ∗ L) ≤ K

The image of the function F.

Image(F )
∆
= {F [x ] : x ∈ domain F}

The element of position Len(seq) of a sequence seq.

last(seq)
∆
= seq [Len(seq)]

The largest element in the sequence, assuming sequence to be sorted in ascending order.

largestElem(sortedSeq)
∆
= if sortedSeq = 〈〉 then 0 else last(sortedSeq)

All elements of seq1 smaller than elem and the largest element in seq2.

subSeqSmaller(seq1, seq2, elem)
∆
= SelectSeq(seq1, lambda p :

p < elem ∧ p > largestElem(seq2))

All elements of seq1 larger than the largest element in seq2.

subSeqLarger(seq1, seq2)
∆
= if seq2 = 〈〉

then seq1
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else SelectSeq(seq1, lambda p :

p > largestElem(seq2))

TRUE i� the sequence seq contains the element elem.

containsElem(seq , elem)
∆
= elem ∈ Image(seq)

The minimum and maximum element in set S.

min(S )
∆
= choose s ∈ S : ∀ a ∈ S : s ≤ a

max (S )
∆
= choose s ∈ S : ∀ a ∈ S : s ≥ a

The smaller of the two values.

minimum(a, b)
∆
= if a < b then a else b

The given index i modulo the sequences' length.

mod(i , len)
∆
= if i%len = 0 then len else (i%len)

Logical bit-shifting to the right (shifts in zeros from the left/MSB). TLC's standard division does not

round towards zero, thus this is speci�ed recursively, manually taking care of rounding.

recursive shiftR( , )

shiftR(n, pos)
∆
= if pos = 0 then n

else let odd(z )
∆
= z%2 = 1

m
∆
= if odd(n) then (n − 1)÷ 2 else n ÷ 2

in shiftR(m, pos − 1)

Bitshifting (faster for any real implementation).

bitshift(fp, p)
∆
= let k

∆
= choose k ∈ 1 . . K : 2k = K

in mod(shiftR(fp, k − 1) + 1 + p, K )

Re-scale.

rescale(k , maxF , minF , fp, p)
∆
= let f

∆
= (k − 1)÷ (maxF −minF )

in mod((f ∗ (fp −minF + 1)) + p, k)

Calculates an fp's index where fp ∈ fps. p is an alternative address, such that: p ∈ 0..P. Uses bitshifting

i� K is power of two.

idx (fp, p)
∆
= if ∃ n ∈ 1 . . K : 2n = K

then bitshift(fp, p)

else rescale(K , max (fps), min(fps), fp, p)

TRUE i� the �ngerprint at table position index is equal to fp or its corresponding negative fp value

(marked as to be copied to external).
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isMatch(fp, index , table)
∆
= ∨ table[index ] = fp

∨ table[index ] = (− 1 ∗ fp)

TRUE i� the table at position index is empty.

isEmpty(index , table)
∆
= table[index ] = empty

TRUE i� the table at position index is marked evicted.

isMarked(index , table)
∆
= table[index ] < 0

A fp wrapped around if its alternate indices are beyond K and its actual index is lower than its primary

idx. Another mental picture for table is a circular list and wrapped means that a �ngerprint crossed

the logically �rst position of table.

wrapped(fp, pos)
∆
= idx (fp, 0) > mod(pos , K )
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Compare the two �ngerprints fp1 and fp2 for order with regards to their numerical values and their

respective positions i1 and i2.

Returns -1, i� fp2 is less than fp1. Returns 0, i� fp1 and fp2 are equal. Returns 1, i� fp1 is less than

fp2.

compare considers three cases: 1) I� either one or both �ngerprints are empty, they are de�ned to be

equal. Under the assumption of a stable sorting algorithm, fp1 and fp2 are not swapped (ELSE 0). 2)

I� neither one or both �ngerprints wrapped, a basic comparison is done. A basic comparison is one,

where the lower positioned fp has to be numerically lower. 3) I� the truth values for wrapped di�ered,

two cases have to be distinguished:

Let:
	
fps , fp ∈ fps : ∃i ∈ Image(PS [fp]) : wrapped(fp, i)

−→
fps , fps

	
fps

3a) Comparison when fp1 and fp2 are both in
	
fps. If fp1 is at a lower position (thus wrapped) and

numerically lower, swap it with fp2 which is at a higher position and thus did not wrap. For example,

fp1 was inserted into the table after fp2 and thus wrapped, but is numerically lower than fp2.

3b) Special case comparison required by Insertion Sort. It compares a �ngerprint in
	
fps with one in

−→
fps.

Insertion Sort compares adjacent elements. Thus, without this case two �ngerprints fp1 and fpX, which

are eventually handled by 3a), would not be sorted, i� fp2 is inbetween of fp1 and fpX. Thus, fp1 is

swapped with fp2 meaning it moves towards the beginning of table. Eventually, all wrapped �ngerprints

in
	
fps will form a cluster at the beginning of t and can then be sorted with 3a). In other words, we allow

the wrapped �ngerprints to be compacted at the beginning ot the table and non-wrapping �ngerprints

to be moved to higher positions.

Assumeming that the beginning of table is: �1,23,22,...,24� (assuming fps is 1..24, L=3 and K=6.

Sorted, table needs to change to �1,23,24,...,22�. Without 3b), Insertion Sort compares 22 to 1 and 23

to 22. The outcome would be �1,22,23,...,24�, which is cleary not fully sorted. Thus, in order to handle

this case, we allow IS to swap 22 and 23 with 1. As a result, table - when sorted - is �23,24,1,...,22�.

Can we be sure, that non-wrapping �ngerprints do not get moved out beyond the end of their probing

sequence? Obvously, at most, L-1 wrapping �ngerprints can be located at the beginning of table. In

this case, only one non-wrapping �ngerprint will be in the table, which maximally will be moved L-1

positions to the right with regards to its primary position.

compare(fp1, i1, fp2, i2)
∆
=

if fp1 6= empty ∧ fp2 6= empty 1)

then if wrapped(fp1, i1) = wrapped(fp2, i2) 2)

then if i1 > i2 ∧ fp1 < fp2 then − 1 else 1

else if i1 < i2 ∧ fp1 < fp2 then − 1 else 3a

if i1 > i2 ∧ fp1 > fp2 then − 1 else 0 3b

else 0

--algorithm OpenAddressing
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table: The actual hash table speci�ed as a TLA+ sequence. history: An auxiliary (history) variable

unrelated to the actual hash table speci�cation. It just records the inserted �ngerprints to be veri�ed

by Inv. An implementation won't need history. external: The external storage where �ngerprints are

eventually evicted to. outer/inner: Index variables local to the sort action. P: The number of times an

alterante index is to be tried.

{variable table = [i ∈ 1 . . K 7→ empty ],

external = 〈〉,
newexternal = 〈〉,
evict = false, AtomicBoolean in Java

waitCnt = 0, CyclicBarrier in Java

history = {} ;

Atomically compare and swap an element of table.

Atomicity is implicit due to the absence of labels.

macro CAS (result , pos , expected , new){
if (table[pos ] = expected){

table[pos ] := new ;

result := true

}else {
result := false

}
}

procedure Evict()

variables ei = 1, ej = 1, lo = 0 ; {
Insertion sort.

strIns : while (ei ≤ K + L){
lo := table[mod(ei + 1, K )] ;

nestedIns : while (compare(lo, mod(ei + 1, K ),

table[mod(ej , K )], mod(ej , K )) ≤ − 1){
table[mod(ej + 1, K )] := table[mod(ej , K )] ;

if (ej = 0){
ej := ej − 1 ;

goto set ;

}else {
ej := ej − 1 ;

} ;
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} ;
set : table[mod(ej + 1, K )] := lo ;

ej := ei + 1 ;

ei := ei + 1 ;

} ;
ei := 1 ;

Write to external storage.

�ush : while (ei ≤ K + L){
lo := table[mod(ei , K )] ;

if (lo 6= empty ∧
lo > largestElem(newexternal) ∧
((ei ≤ K ∧ ¬wrapped(lo, ei)) ∨
(ei > K ∧ wrapped(lo, ei)))){
Copy all smaller fps than lo from

secondary to newexternal.

newexternal := Append(newexternal ◦
subSeqSmaller(external , newexternal , lo), lo) ;

Mark table[mod(cpy,table)] as being

written to external.

table[mod(ei , K )] := lo ∗ (− 1) ;

} ;
ei := ei + 1 ;

} ;
Append remainder of external to newexternal and

assign newexternal to external.

external := newexternal ◦
subSeqLarger(external , newexternal) ;

newexternal := 〈〉 ;
rtrn : return ;

}

A weak fair process.

fair process (p ∈ Writer)

variables fp = 0, index = 0, result = false, expected = − 1 ; {
pick : while (true){
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No deadlock once all �ngerprints have been inserted.

if ((fps \ history) = {}){
goto Done ;

}else {
Select some fp to be inserted

with (f ∈ (fps \ history)){fp := f ; } ;
} ;

put : index := 0 ;

result := false ;

Set expected to in�nity. expected is reused when

the algorithm runs a primary lookup and �nds a

position which is either EMPTY or isMarked(...).

expected stores the (open) position for later use

where the fp is inserted. Maximally, a position

can be K + L, thus expected is set to K + L + 1;

as an approximation of in�nity.

expected := L ;

Wait for eviction thread to do its work.

if (evict){
waitCnt := waitCnt + 1 ;

waitEv : await evict = false ;

endWEv : waitCnt := waitCnt − 1 ;

goto put

} ;

Check external unless empty. First though, we do

a primary lookup in case the fp in question has not

been evicted to external yet.

chkSnc : if (external 6= 〈〉){
Primary lookup.

cntns : while (index < L){
if (isMatch(fp, idx (fp, index ), table)){
goto pick

}else {
if (isEmpty(idx (fp, index ), table)){
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Found an EMPTY position which proves

that fp cannot be found at higher

positions. Thus, no need to continue.

expected := minimum(expected , index ) ;

goto onSnc ;

}else {
if (isMarked(idx (fp, index ), table)){

None of the lower positions has

fp, thus keep the lowest position

for the second loop as the start

index. No point in checking known

lower positions in the loop again.

expected := minimum(expected , index ) ;

index := index + 1 ;

}else {
index := index + 1

}
}

}
} ;

External lookup.

onSnc : if (containsElem(external , fp)){
goto pick

}else {
Have next loop start at expected determined

by previous loop.

index := expected ;

Re-init expected to be used for its alternate purpose.

expected := − 1 ;

} ;
} ;

Put inserts the given fp into the hash table by sequentially

trying the primary to the P's alternate position.

insrt : while (index < L){
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expected := table[idx (fp, index )] ;

if (expected = empty ∨
(expected < 0 ∧ expected 6= (− 1) ∗ fp)) {

cas : CAS (result , idx (fp, index ), expected , fp) ;

if (result){
history := history ∪ {fp} ;
goto pick

}else {
Has been occupied in the meantime,

try to �nd another position.

goto insrt

}
} ;

Has fp been inserted by another process? Check isMatch

AFTER empty and on-external because of two reasons:

a) Thread A �nds table[pos] to be empty but fails

to CAS fpX. Thread B concurrently also �nds

table[pos] to be empty and succeeds to CAS fpX.

b) I� table[pos] is empty or -1, higher positions

cannot be a match.

isMth : if (isMatch(fp, idx (fp, index ), table)){
goto pick

}else {
index := index + 1 ;

} ;
} ; end of while/insrt

We failed to insert fp into a full table, thus try

to become the thread that evicts to external.

The label tryEv makes sure, that the read and

write occur atomically. An imlementation has to

CAS or use some other mechanism to control

concurrenry.

tryEv : if (evict = false){
CAS evict!
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evict := true ;

Wait for all other insertion threads and

the one reader to park.

waitIns : await waitCnt = Cardinality(Writer)− 1 + Cardinality(Reader) ;

call Evict() ;

endEv : evict := false ;

goto put ;

}else {
goto put

}
}

} end while/pick

}
}

BEGIN TRANSLATION

TLAPlus translation partially omitted

variables table, external , newexternal , evict , waitCnt , history , pc, stack ,

ei , ej , lo, fp, index , result , expected

Termination
∆
= 3(∀ self ∈ ProcSet : pc[self ] = �Done�)

END TRANSLATION

contains(f , t , seq , Q)
∆
= ∨ ∃ i ∈ 0 . . Q : isMatch(f , idx (f , i), t)

∨ ∃ i ∈ 1 . . Len(seq) : seq [i ] = f

∨ if f ∈ (Image(lo) \ {0}) then evict = true

else false

All �ngerprint in history are (always) members of the seen set C, all (fps history) never are. During

eviction, the sort algorithm might swap two �ngerprints non-atomically s.t. the table does not contain

one of the two �ngerprints. The one not it table is then expected to be in the lo variable of the sort

algorithms.

Contains
∆
= ∧ ∀ seen ∈ history :

contains(seen, table, external , L)

∧ ∀ unseen ∈ (fps \ history) :

¬contains(unseen, table, external , L)

135



The absolute value of the given number.

abs(number)
∆
= if number < 0 then − 1 ∗ number else number

True when no eviction is running.

FindOrPut
∆
= evict = false

FALSE i� table contains duplicate elements (excluding empty), unless Evict is running. During eviction,

the sort algorithm might swap two �ngerprints non-atomically s.t. the table contains duplicates of one

of the two �ngerprints temporarily.

Duplicates
∆
= FindOrPut =⇒ let sub

∆
= SelectSeq(table, lambda e : e 6= empty)

in if Len(sub) < 2 then true

else ∀ i ∈ 1 . . (Len(sub)− 1) :

∀ j ∈ (i + 1) . . Len(sub) :

abs(sub[i ]) 6= abs(sub[j ])

seq is sorted i� its empty-�ltered sub-sequence is sorted. An empty sequence is de�ned to be sorted.

isSorted(seq)
∆
= let sub

∆
= SelectSeq(seq , lambda e : e 6= empty)

in if Len(sub) < 2 then true

else ∀ i ∈ 1 . . (Len(sub)− 1) :

sub[i ] < sub[i + 1]

External storage is always sorted in ascending order.

Sorted
∆
= isSorted(external) ∧ isSorted(newexternal)

TRUE i� f is found in table within idx(f,0)..id(f,L).

containedInTable(f )
∆
= ∃ l ∈ 0 . . L : table[idx (abs(f ), l)] = f

TRUE if all �ngerprints ∈ history correctly transition from table to the external storage. Models a

three state FSM.

Consistent
∆
= FindOrPut =⇒ ∀ seen ∈ history :

∧ containedInTable(seen) =⇒ ¬containsElem(external , seen)

∧ containedInTable(seen ∗ (− 1)) =⇒ containsElem(external , seen)

∧ ¬containedInTable(seen) =⇒ containsElem(external , seen)
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Under all behaviors, the algorithm makes progress and eventually puts all �ngerprints in fps into the

table resulting in history = fps.

Complete
∆
= 32(history = fps)

I� certain that Termination is guaranteed, the liveness property Complete can be rewritten to the safety

property below. A safety property can be checked faster.

CompleteAsSafety
∆
= ∀ self ∈ ProcSet : pc[self ] = �Done� =⇒ (history = fps)
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B.3. Sort

Full listing of the dedicated PlusCal speci�cation discussed in section 7.1.2. Contrary to

the previous speci�cation, the Sort speci�cation studies the properties of the Insertion

Sort algorithm isolated from lock-freedom. It shares several operators and parts of the

PlusCal code with B.2.

module Sort

extends Integers , Sequences , FiniteSets

constant empty , A model value that marks unoccupied positions in table

L, The maximum length of the probing sequence.

fps , The set of �ngeprints (Integers) in table.

K , The length of table.

PS A function whose domain are the fps and whose image

are the correspdoing probing sequences.

The element of position Len(seq) of a sequence seq.

last(seq)
∆
= seq [Len(seq)]

The largest element in the sequence, assuming sequence to be sorted in ascending order.

largestElem(sortedSeq)
∆
= if sortedSeq = 〈〉 then 0 else last(sortedSeq)

All elements of seq1 smaller than elem and the largest element in seq2.

subSeqSmaller(seq1, seq2, elem)
∆
= SelectSeq(seq1, lambda p :

p < elem ∧ p > largestElem(seq2))

All elements of seq1 larger than the largest element in seq2.

subSeqLarger(seq1, seq2)
∆
= if seq2 = 〈〉

then seq1

else SelectSeq(seq1, lambda p :

p > largestElem(seq2))

The minimum and maximum element in set S.

min(S )
∆
= choose s ∈ S : ∀ a ∈ S : s ≤ a

max (S )
∆
= choose s ∈ S : ∀ a ∈ S : s ≥ a
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The given index i modulo the sequences' length.

mod(i , len)
∆
= if i%len = 0 then len else (i%len)

Re-scale.

rescale(k , maxF , minF , fp, p)
∆
= let f

∆
= (k − 1)÷ (maxF −minF )

in mod((f ∗ (fp −minF + 1)) + p, k)

Calculates an fp's index where fp ∈ fps. p is an alternative address, such that: p ∈ 0..P.

idx (fp, p)
∆
= rescale(K , max (fps), min(fps), fp, p)

The image of the function F.

Image(F )
∆
= {F [x ] : x ∈ domain F}

The position of elem in sequence seq.

At(seq , elem)
∆
= choose i ∈ domain seq : seq [i ] = elem

The probing sequence with L=l of the given �ngerprint fp.

ProbingSequence(fp, l)
∆
= [i ∈ 1 . . l 7→ idx (fp, i − 1)]

The probing sequences of all �ngerprints ∈ fpts with L=l.

ProbingSequences(fpts , l)
∆
= [fp ∈ fpts 7→ ProbingSequence(fp, l)]

TRUE, i� the sequence's elements are all the empty element.

isEmpty(seq)
∆
= Image(seq) = {empty}

All non-empty elements (�ngerprints) have to be within their corresponding probing sequence, s.t. ps

= PS[t[i]]. Let p be the actual position of a �ngerprint, we further request, that the positions lower

than p in ps are non-empty. Finally, we exclude those t, which have duplicates (ignoring empty) or

which are the empty seq.

Filter(t)
∆
= ∧ ∀ i ∈ 1 . . Len(t) :

empty is ignored/skipped anyway.

∨ t [i ] = empty

All �ngerprints within their probing sequence.

∨ ∧ i ∈ Image(PS [t [i ]])

All lower positions of the �ngerprint's

probing sequence are non-empty.

∧ ∀ pos ∈ Image(

SubSeq(PS [t [i ]], 1, At(PS [t [i ]], i))) :
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t [pos ] 6= empty

...and there are no duplicates (except empty).

∧ let sub
∆
= SelectSeq(t , lambda p : p 6= empty)

in Len(sub) = Cardinality(Image(sub))

...and the sequence is the non-empty sequence.

∧ ¬isEmpty(t)

Generate all possible permutations of length 1..K out of the elements fps ∪ empty . Out of this (very

large) set of permutations, exclude those, that do not adhere to Filter.

Inits
∆
= union {{perm ∈ [1 . . K → (fps ∪ {empty})] : Filter(perm)}}

A fp wrapped around if its alternate indices are beyond K and its actual index is lower than its primary

idx.

wrapped(fp, pos)
∆
= idx (fp, 0) > mod(pos , K )
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Compare the two �ngerprints fp1 and fp2 for order with regards to their numerical values and their

respective positions i1 and i2.

Returns -1, i� fp2 is less than fp1. Returns 0, i� fp1 and fp2 are equal. Returns 1, i� fp1 is less than

fp2.

compare considers three cases: 1) I� either one or both �ngerprints are empty, they are de�ned to be

equal. Under the assumption of a stable sorting algorithm, fp1 and fp2 are not swapped (ELSE 0). 2)

I� neither one or both �ngerprints wrapped, a basic comparison is done. A basic comparison is one,

where the lower positioned fp has to be numerically lower. 3) I� the truth values for wrapped di�ered,

two cases have to be distinguished:

Let:
	
fps , fp ∈ fps : ∃i ∈ Image(PS [fp]) : wrapped(fp, i)

−→
fps , fps

	
fps

3a) Comparison when fp1 and fp2 are both in
	
fps. If fp1 is at a lower position (thus wrapped) and

numerically lower, swap it with fp2 which is at a higher position and thus did not wrap. For example,

fp1 was inserted into the table after fp2 and thus wrapped, but is numerically lower than fp2.

3b) Special case comparison required by Insertion Sort. It compares a �ngerprint in
	
fps with one in

−→
fps.

Insertion Sort compares adjacent elements. Thus, without this case two �ngerprints fp1 and fpX, which

are eventually handled by 3a), would not be sorted, i� fp2 is inbetween of fp1 and fpX. Thus, fp1 is

swapped with fp2 meaning it moves towards the beginning of table. Eventually, all wrapped �ngerprints

in
	
fps will form a cluster at the beginning of t and can then be sorted with 3a). In other words, we allow

the wrapped �ngerprints to be compacted at the beginning ot the table and non-wrapping �ngerprints

to be moved to higher positions.

Assumeming that the beginning of table is: �1,23,22,...,24� (assuming fps is 1..24, L=3 and K=6.

Sorted, table needs to change to �1,23,24,...,22�. Without 3b), Insertion Sort compares 22 to 1 and 23

to 22. The outcome would be �1,22,23,...,24�, which is cleary not fully sorted. Thus, in order to handle

this case, we allow IS to swap 22 and 23 with 1. As a result, table - when sorted - is �23,24,1,...,22�.

Can we be sure, that non-wrapping �ngerprints do not get moved out beyond the end of their probing

sequence? Obvously, at most, L-1 wrapping �ngerprints can be located at the beginning of table. In

this case, only one non-wrapping �ngerprint will be in the table, which maximally will be moved L-1

positions to the right with regards to its primary position.

compare(fp1, i1, fp2, i2)
∆
=

if fp1 6= empty ∧ fp2 6= empty 1)

then if wrapped(fp1, i1) = wrapped(fp2, i2) 2)

then if i1 > i2 ∧ fp1 < fp2 then − 1 else 1

else if i1 < i2 ∧ fp1 < fp2 then − 1 else 3a

if i1 > i2 ∧ fp1 > fp2 then − 1 else 0 3b

else 0

--algorithm Sort
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table: The actual hash table speci�ed as a TLA+ sequence. history: An auxiliary (history) variable

unrelated to the actual hash table speci�cation. It just records the inserted �ngerprints to be veri�ed

by Inv. An implementation won't need history. external: The external storage where �ngerprints are

eventually evicted to. outer/inner: Index variables local to the sort action. P: The number of times an

alterante index is to be tried.

{variable table ∈ Inits ,

history = {},
external = 〈〉,
newexternal = 〈〉,
ei = 1,

ej = 1,

lo = 0 ; {

Remember the �ngerprints initially in table.

history : history := Image(table) \ {empty} ;

Insertion sort.

strIns : while (ei ≤ K + L){
lo := table[mod(ei + 1, K )] ;

nestedIns : while (compare(lo, mod(ei + 1, K ),

table[mod(ej , K )], mod(ej , K )) ≤ − 1){
table[mod(ej + 1, K )] := table[mod(ej , K )] ;

if (ej = 0){
ej := ej − 1 ;

goto set ;

}else {
ej := ej − 1 ;

} ;
} ;

set : table[mod(ej + 1, K )] := lo ;

ej := ei + 1 ;

ei := ei + 1 ;

} ;
ei := 1 ;

Write to external storage.

�ush : while (ei ≤ K + L){
lo := table[mod(ei , K )] ;
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if (lo 6= empty ∧
lo > largestElem(newexternal) ∧
((ei ≤ K ∧ ¬wrapped(lo, ei)) ∨
(ei > K ∧ wrapped(lo, ei)))){
Copy all smaller fps than lo from

secondary to newexternal.

newexternal := Append(newexternal ◦
subSeqSmaller(external , newexternal , lo), lo) ;

Mark table[mod(cpy,table)] as being

written to external.

table[mod(ei , K )] := lo ; * (-1);

} ;
ei := ei + 1 ;

} ;
Append remainder of external to newexternal and

assign newexternal to external.

external := newexternal ◦
subSeqLarger(external , newexternal) ;

newexternal := 〈〉 ;
}
}

BEGIN TRANSLATION

variables table, history , external , newexternal , ei , ej , lo, pc

omitted

END TRANSLATION

Invariant: external is always sorted.

IsSorted
∆
= ∀ x ∈ 1 . . Len(external) :

∀ y ∈ x . . Len(external) :

external [x ] ≤ external [y ]

Post-condition: Upon termination (pc="Done"), the �ngerprints in external and the history set of

�ngerprints are identical.
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IsComplete
∆
= pc = �Done� =⇒ history = Image(external)

Invariant: All �ngerprints (ignoring empty) are always withing their corresponding probing sequence.

IsConsistent
∆
= ∀ i ∈ 1 . . Len(table) :

table[i ] 6= empty =⇒ i ∈ Image(PS [table[i ]])
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