Let TLAT RISE

Markus A. Kuppe

August 16, 2018

1/47

Outline

TLAT
TLA*

2/47

TLAT

» High-level specification language
» Design above the code level

» Distributed and concurrent systems

» = Team wrote two RTOS [?7]

» (First version flew on the Rosetta spacecraft)

» “We witnessed first hand the brain washing done by years of C
programming.”

» “The TLA™ abstraction helped a lot in coming to a much
cleaner architecture.

» “One of the results was that the code size is about 10x less
than the previous version.”

3/47

TLAT

> Untyped
» Zermelo Fraenkel set theory with Choice
» Linear-time framework: Temporal Logic of Actions (TLA)
[MODULE M
VARIABLE v
Init
Next
Spec

Defines initial states
v =v 4+ 1A ... Constrains allowed transitions
Init A O[Next], Defines system executions

> e (1>

A F and optionally weak or strong Fairness
} 1
Safety = O...
Liveness = <0O. ..
L

4/47

PlusCal

» Imperative-style pseudo-code but precise
Atomicity via labels

| 2
» Can embed TLAT
» Transpiles to TLAT
» = Checkable with TLC

» “A gateway drug for programmers” (C. Newcombe)

L

--algorithm Euclid{
variables x = M, y = N; {

while (x # y){
if (x <y{y=y—-x}
else {x=x—-y}
}
} Sequential algorithm needs no labels

}

L

I

5/ 47

Outline

TLAT

Community

6 /47

Some Adopters

VVvVYyVvVYVVyVYVYyYVYY

Microsoft
Amazon
Google
Intel
Oracle
Huawei
ARM
Mongo
Thales

7/47

https://resnet.microsoft.com/video/41348

Community at large

> “tlaplus” Google Group with ~900 members (almost
self-sustaining)

» Microsoft internal “TLA Plus” group with ~150 members
» GitHub (~500 stars) and ~10 contributors
» Twitter, Reddit, Youtube, ...

8 /47

PGo

» PlusCal to Go transpiler (Beschastnikh et. al.)
> Very early stages
» Single PlusCal Process

> https://github.com/UBC-NSS/pgo

9/47

https://www.cs.ubc.ca/~bestchai
https://github.com/UBC-NSS/pgo

BMCMT: Bounded Model Checking of TLAT with SMT

» Abstraction-based parameterized TLA+ checker
> Uses Z3

» Challenge: “Rich language. Specifications in TLA™ are
considerably more expressive than standard software: TLAY is
untyped, it allows quantification over sets, comparison of
cardinalities, and comparison and updates of the states of
concurrent components.” [?]

» Recording of TLA+ community event talk:

» TLC faster for small models (especially when bound unknown)

10/ 47

http://forsyte.at/research/apalache/
https://www.youtube.com/watch?v=Xl1--arESl8

Outline

TLAT

TLA Toolbox, Tools, and TLAPS

11/47

TLA Toolbox, Tools, and TLAPS

TLA+ Toolbox ®
File Edit Window TLC Model Checker TLA Proof Manager Help
5 |Rysums_even.tla 2 &
& n/sums._even.tla
TLA Module
] MODULE Sums_even ------------------------- ~

2 * A proof that the sum x+x of the natural number x is always even.
3

4 EXTENDS Naturals, TLAPS

5

6 Even(x) == x %2 =10
7 0dd(x) == x % 2 =
8

9 * Z3 can solve it in a single step
10- THEOREM \A x \in Nat : Even(x+x)
11 BY Z3 DEF Even
12
13 * alternatively we prove this step-wise by making a case distinction on x being even or odd
14-THEOREM T1 == \A x \in Nat: Even(x+x)
15 <1>a TAKE x \in Nat
16 <1>1 \A z \in Nat : Even(z) \/ 0dd(z) BY DEF Even, Odd
17-<1>2 CASE Even(x)
18 <2> USE <1>2
19 <2> ((x%2) + (x%2)) %2 = (x+x)%2 BY <1>1 DEF Even, 0dd
20 <2> DEFINE A == X%2
21 <2> HIDE DEF A
22 <2>A=0=>(A+A) %2= (0+0) % BY SMT DEF Even
23 <2> QED BY DEF Even, A
24-<1>3 CASE 0dd(x)
25 <2> USE <1>3
26 <2> ((x%2) + (x % 2)) % 2 = (x#x)%2 BY <1>1 DEF Even, 0dd
27 <2> DEFINE A == X%2
28 <2> HIDE DEF A
29 <2>A=1=> (A+A) %2= (1+1) %2 BY SMT DEF Even
<2> QED BY DEF Even, 0dd, A
31 <1> QED BY <1>1, <1>2, <1>3

33

34
35 * Modification History
36 * Last modified Tue Mar 08 11:49:27 CET 2016 by marty c

11 8 Spec Stows - PG
Figure: TLAPS 12/47

TLA Toolbox, Tools, and TLAPS

File Edit Window TLC Model Checker TLA Proof Manager Help

[R Hanoltla 53 =8

e =
- ¥ _hanoi/Hanoi tla
TLA Module|
1 - HODULE Hanoi -
2 EXTENDS Naturals, Bits, Finitesets, TLC
5
e
5 (= TRUE iff i is a power of two
6
7 Power0fTwo(i) = i & (i-1)
s
9 (
10 (* A set of all powers of two up to n
R R A tethaia Bt b
12 Set0ffower0fTwo(n) == {x \in 1..(2°n-1): Power0fTuo(x)
5
1
15 (* Copied fron TLA+'s Bags standard library. The sun o
16 (* DOMAIN .
7
18 Sum(f) == LET DSUm(S \in SUBSET DOMATN f]
19 LET elt == CHOOSE e \in S : TRUE
20 N IF S - {} THEN O
21 ELSE flelt) + Dsun(s \ (e
2 IV DSun[DOMAIN f]
2
2 (
25 (* D is nunber of disks and N number of towers
% (
27 CONSTANT O, N
2
2 (
30 (* Touers of Hanol with N towers
3 (
32 VARTABLES touers
35 vars == <<tovers>>
34
T ———
36 (= The total sum of all tovers must amount to the disk
37
38 Inv = Sun(towers) = 2°D - 1
35
40 (* Touers are naturals in the interval (0, 2°D] *)
41 TypeOK == /\ \A i \in DOMAIN towers :

/\ towers[i] \ir

TLA+ Toolbox

£ Model 1 % =8

Model Overview| Advanced Options | Model Checking Results

Model Overview 1 warning detected
o®

@ Model description

5 What Is the model?
Specify the values of declared constants|

& What is the behavior spec?

Initial predicate and next-state relation D<3

It Ned

Next:

Advanced parts of the model: Additional
State constraints,

@ Temporal formula

Action coy

& How to run?
TLC Parameters

No Behavior Spec Number of worker threads:

& What to check? Fraction of physical memory allocated t|

@ Deadlock
 Recover from checkpoint (@)
& Invariants

Formulas true in every reachable state. Checkpoint ID:

= Notsolved Add
s Inv

Edit

Run in distributed mode |off

Remove
4

[Properties

& TLCErrors 2 =n

Model_1

& Error-Trace Exploration
Enter expressions to be evaluated at each
state of the trace

| add
Edit
Remove
| Explore
| Restore
Error-Trace
Name Value
* & <lnitial predica State (num = 1)
> @ towers <<7,0,0,0>
“ & <Nextline 89, State (num = 2)
> = towers <<6,1,0,05>
" & <Nextline 89, State (num = 3)
> & towers <<4,1,2,05>
" & <Nextline 89, State (num = 4)
> @ towers <<0,1,2,4>>
* & <Nextline 89, State (num = 5)
> = towers <<0,1,0,6>
" & <Nextline 89, State (num = 6)
» ® towers <<0,0,0,7>>

Select line in &

or 1race td
show its value here

Figure:

Toolbox Model Checking

13 /47

TLC

» Explicit-state model checker for TLA™

» Disk-based (but you don’t want it to go to disk)

» Handles a subclass of TLAT that seems to be useful in
practice

» E.g. no Temporal Existential Quantification, Composition of
Actions, ...

14 /47

TLC

» Safety checking corresponds to Breadth-First search over
on-the-fly generated state graph

> Fingerprints ~ 254 (long)
> Liveness checking corresponds to Depth-First search over
(partial) behavior graph [?]
» Behavior graph is state graph x tableaux
» Technically limited to ~ 232 vertices

15 /47

Outline

Past, Present, Future Projects
Scalability

16 / 47

Schematic TLC

-

4

1
’ Forest Exec. Trees‘

counter
example

. Parameters -’ i
Transition S. ' Properties o
Procedure Procedure C
s : Violation?
» to generate to verify all £ o
State Graph Properties ¢
\yes
CFps Jse JOT
7y T S-a

17 /47

Schematic TLC

-

| Parameters-” |
$ | _
Transition S. i ' Properties o
Procedure Procedure C
s : Violation?
» to generate to verify all £ o
State Graph Properties ¢

1 O T

S
nseen states example
’ Forest Exec. Trees‘

18 /47

Lock-Striping FPS

1. A global lock for FPS to guard concurrent find-or-puts does
not scale due to lock contention

2. = Partition FPS and use one lock per partition

“[...] lock striping seems much
more promising because the size of the stripe set
can be increased as processor counts increase.”

19 /47

Lock-Striping FPS

o —— Throughput X 3 X 3
8 - -—- Cache Misses R S
~ ~
X -~
iX
o
8 | L
o
© °
° @
S
o +
o _| r o
3 o
— %3
z g
3 {4}
2 2
& 84 s
g o o
o ¥ 5
= o @
[¢ ©
T
8 [&
. >
5 X A
o 7 B
o
g X
[=2}
o
T
r o
=4 ~
S e Al
S H

T T T T T T T T T T T T T T T T T T
26 27 28 29 910 Hll 512 513 514 515 516 17 18 519 520 H21 922 523

Locks

Figure: Lock striping exhibits lock coherence
20/47

Lock-Free & Shared-Nothing

Minimize worker contention via:
» Lock-Free (CAS) Partitioned/Sharded FPS

» Parallel adaptive sort & parallel eviction to disk
» Raw memory to avoid GC

» Shared-Nothing Trace T per worker
» (Shared-Nothing State Queue SQ)

» OQverly optimistic assumptions about average shape/properties
of state graphs!

21/47

Lock-Free & Shared-Nothing

Dataset: 2017-02-21_x32 & 2017-02-22_x32

o — TLC eed
® 7] -—- Spin B

30
Il

25

» TLC beats
scalability of SPIN

> (Bakery spec)
» SPIN outperforms
throughput of TLC

Speedup Z
20

15
Il

10

0 50 100 150

22 /47

Liveness Checking

» Check Liveness: Find and check lassos for fulfilling cycles
» Strongly Connected Components with ?
» DFS, linear time, implemented iteratively

» Liveness checking runs periodically (stops safety)

Figure: CPU usage with periodic liveness checking (32 core machine)

23 /47

Concurrent SCC

» R.E. Tarjan drafted a concurrent algorithm for us

» Scalability of prototype not promising, abandoned idea for
lower hanging fruits

» “Multi-Core on-the-Fly SCC Decomposition” [?]

» GSoC student Parv Mor implemented prototype this summer
» Results look more promising

» Contention/Coherence Union find data-structure?!

» “A Randomized Concurrent Algorithm for Disjoint Set Union”

[?]

24 /47

Concurrent SCC

plots/resistance.1.dat
9e+10

8e+10 * y
7e+10 T

6e+10 - T

5e+10 - T

4e+10 | - i
*

3e+10 [== * * g
= = ==
2e+10 _

*
*

Runtime (ns) excluding 10

le+10 - ¥ g

1 2 3 4 5 6
1 + log_2(Number of threads)

Vertices: 13.8M, Arcs: 32.1M, SCCs: 3 (max 13.8M), Diameter: 60391

25 /47

Concurrent SCC

plots/leader_filters.7.dat
8e+10

7e+10 T E

6e+10 - T

5e+10 - T

4e+10 - T T T g

3e+10 E

erto | ; J | -

le+10

Runtime (ns) excluding 10

1 2 3 4 5 6
1 + log_2(Number of threads)

Vertices: 26.3M, Arcs: 91.7M, SCCs: 26.3M (max 1), Diameter: 71

26 /47

Concurrent SCC

plots/cambridge.6.dat

1.7e+10
1.6e+10
1.5e+10 [
1.4e+10 [X

1.3e+10 [

1.2e+10 [é
1.1e+10 *

le+10 %
9e+09 - E

8e+09 - %] %

7e+09
1 2 3 4 5 6
1 + log_2(Number of threads)

Runtime (ns) excluding 10

Vertices: 3.4M, Arcs: 9.5M, SCCs: 8413 (max 3.3M), Diameter: 418

27 /47

Distributed TLC

» Executes TLC on network of
machines
» Distributed Fingerprint Set
(DHT)
» Nearby memory faster
than (local) disks
P> Limitations

» Master is bottleneck &
SPOF

» Checkpointing
» No liveness checking
» Difficult to setup

master node worker nodes

DHT nodes

28 /47

Distributed TLC

Dataset: Grid5k 110_n06

25

A

A AA AA AA

AAA AA A A4
- Asa A

AA A
A A

Speedup
15 2.0

1.0

0.5

0.0

0 20 40 60 80 100

Nodes

Figure: Scalability distributed TLC: Cost/State = 219

29 /47

Distributed TLC

Dataset: Grid5k 112_n06

150
|

100
|

Speedup

0 50 100 150

Nodes

Figure: Scalability distributed TLC: Cost/State = 212

30/ 47

Distributed TLC

Dataset: Grid5k 114_n06

150
|

100
|

Speedup

0 50 100 150

Nodes

Figure: Scalability distributed TLC: Cost/State = 214

31/47

Outline

Past, Present, Future Projects

32/47

Cloud TLC

» Push-Button model checking in the cloud
» Support for Azure and AWS
> Just compute APIs for portability reasons
» Hide away idiosyncrasies of TLC and cloud platform

» Support for single node TLC and Distributed TLC
» Can be started from Toolbox and CLI within seconds
» (Cold-start in the range of minutes

v

Easily check several models concurrently
» Instance count is elastic with regards to resource demand

> Instances dispose automatically after inactivity

33/47

https://jclouds.apache.org/reference/providers/#compute-apis

Outline

Past, Present, Future Projects

Performance

34/47

Performance Next-State

> No intermediate language, no compiler, just AST interpreter

» Simple left-to-right evaluation of expressions
» Recursion but no tail call optimization in Java

» = Evaluation of next-state at least two orders magnitude

slower compared to SPIN

/home/markus/d

ump/syncthing/work/LabInt

Figure: Throughput (ops/s) normal evaluation
(blue)

(see online)

(red) vs. module overwrite

35 /47

http://jmh.morethan.io/?sources=https://raw.githubusercontent.com/tlaplus/tlaplus/master/tlatools/test-benchmark/tlc2/tool/ModuleOverwrites-1531220029-80dc6de2b.json

No Partial Evaluation

MODULE Frob

[
VARIABLES x, y
it 2 x=0Ay=0

expensiveOp(n) = CHOOSE e € SUBSET (1 .. n): TRUE

L

I

NextOuch £ Ax' €1 ..100
A y' = expensiveOp(23)

L

NextYeah = Ay’ = expensiveOp(23)
Ax"€1..100

36 /47

TLAT Compiler

» “The Truffle language development framework allows running
programming languages efficiently on GraalVM.“!

» “The guest language developer gets a high-performance
language implementation, but does not need to be a compiler
expert.” [?]

» Speedup of evaluation at runtime over special-purpose
compilers:
» Ruby 3.8x
> R 5x
» Translate AST emitted by SANY to Truffle AST

» = Partial Evaluation for TLAt

1GraalVM is a just-in-time compiler for OpenJDK.
37 /47

http://www.graalvm.org/docs/why-graal/
http://www.graalvm.org/docs/why-graal/

Outline

Past, Present, Future Projects

State Space Reduction

38 /47

Find Inductive Invariant candidates with TLC

Goal: Proof invariance of | with TLAPS
Find inductive invariant Inv that satisfies:
1. Init = Inv, which means that /nv is true in all initial states.
2. Inv = I, which means that / is true in every state on which
Inv is true.

3. Inv A Next = Inv’, which means if Inv is true on any state s,
then it is true on any state reachable from s by a Next step.

3.1 Let TLC check:
CheckinductiveSpec = Inv A O[Next]ars

[?]

39 /47

Find Inductive Invariant candidates with TLC

: MODULE Foo
EXTENDS Naturals

VARIABLE x

TypeOK = x € SUBSET (1..500) orx € Nat, ...
H = .. interesting part"
Inv £ TypeOK N H

CheckinductiveSpec = Inv A O[Next], Make Inv the initial predicate,
I |

40/ 47

New Standard Module Randomization

MODULE Randomization

RandomSubset(k, S) equals a randomly chosen subset of S containing k elements,
where 0 < k < Cardinality(S).
RandomSubset(k, S) = CHOOSE T € SUBSET S : Cardinality(T) = T

RandomSetOfSubsets(k, n, S) equals a pseudo-randomly chosen set of subsets
of S — that is, a randomly chosen subset of SUBSET S. Thus, each element T
of this set is a subset of S. Each such T is chosen so that each element of S
has a probability n / Cardinality(S) of being in T. Thus, the average number of
elements in each chosen subset T is n. The set RandomSetOfSubsets(k, n, S)
is obtained by making k such choices of T. Because this can produce duplicate
choices, the number of elements T in this set may be less than k.

RandomSetOfSubsets(k, n, S) £
CHOOSE T € SUBSET SUBSET S : Cardinality(T) < k

41/47

New Standard Module Randomization

: MODULE Foo
EXTENDS Integers, Randomization

VARIABLE x

TypeOK = x € RandomSubset(4711, SUBSET (1 .. 500))
HE: ..
Inv £ TypeOK N H

A

CheckInductiveSpec = Inv ANOJ...]

42/47

Symmetry Reduction

» Chooses a representative of equivalence classes (orbit) of states
» Constructive Orbit Problem - in general - is NP-hard [see 7]
MODULE Symmetry |

| EXTENDS FiniteSets
VARIABLE x
CONSTANT S
ASSUME (Cardinality(S) > 9)

Spec £ (x € S)ADO[x" € §](xy Without symmetry: 9 states, without: 1
J

> For each state enumerate |vars| * |A|! « |B|! where A and B are two
symmetry sets

» Not supported by liveness checking (TLC prints warning)

43 /47

Liveness under Symmetry

» TLAT actions (labeled arcs) hard to account for in quotient
graph
» Approach resulted in incompleteness of liveness checking
» = Abandoned idea

> Maybe: Use quotient graph to find SCCs, re-generate actual
SCC for all elements of symmetry set

» Inefficient if SCCs are large (which they tend to be)

44 /47

Partial Order Reduction for TLAT?

» (Static) POR - similar to SPIN’s implementation - explored by
S. Merz

» = Didn't work too well
» SPIN fine-grained atomicity similar to programming language
» TLAT due to abstractions coarse-grained atomicity

> Not looked at PlusCal (fine-grained atomicity)

» Dynamic POR might be different (open question)

45 /47

Conclusion & Outlook
» Continue to focus on scalability of parallel and distributed TLC

» Concurrent SCC search with lock-free union find
» Scalability StateQueue

» “TLA+ compiler” to speed-up evaluation of next-state relation
» Shift Toolbox maintenance to community

» Machine Learning combined with Cloud TLC
» Optimize scalability and performance => Less manual tuning
of TLC
> Predict size of state graph/time to check => User defines
“when”

» Start new with TLC-Next instead of continue with existing
TLC

» Feature cost and technical debt to drag on
» OTS data-structures not (yet?) ready for multicore
“revolution”

» Scalability & Performance too much of an art
46 / 47

Q&A

QL&A

47 /47

Bibliography |

48 / 47

	TLAmath text inlined[fg]math text inlinedfgmath text inlined[fg]math text inlinedfg+
	TLAmath text inlined[fg]math text inlinedfgmath text inlined[fg]math text inlinedfg+
	Community
	TLA Toolbox, Tools, and TLAPS

	Past, Present, Future Projects
	Scalability
	Cloud TLC
	Performance
	State Space Reduction

	Conclusion & Outlook
	Appendix

