
Markus A. Kuppe

Engineer TLA+ Project

RiSE group

March 08, 2019



�Write down a spec." (not just
a hint but a principle)

Butler Lampson



TLA+ 10,000ft Above

I High-level speci�cation language independent of any
programming language
I Design above the code level

I Isolated from any framework
I Abstract away irrelevant details

I Universally applicable
I Scales from function-level to concurrent and distributed

systems

I Highly expressive because based on basic mathematics
I Rapid progress

I PlusCal has more sca�olding if desired
I Learners choose PlusCal



TLA+ 10,000ft Above

I High-level speci�cation language independent of any
programming language
I Design above the code level

I Isolated from any framework
I Abstract away irrelevant details

I Universally applicable
I Scales from function-level to concurrent and distributed

systems

I Highly expressive because based on basic mathematics
I Rapid progress

I PlusCal has more sca�olding if desired
I Learners choose PlusCal



TLA+ 10,000ft Above

I High-level speci�cation language independent of any
programming language
I Design above the code level

I Isolated from any framework
I Abstract away irrelevant details

I Universally applicable
I Scales from function-level to concurrent and distributed

systems

I Highly expressive because based on basic mathematics
I Rapid progress

I PlusCal has more sca�olding if desired
I Learners choose PlusCal



TLA+ 10,000ft Above

I High-level speci�cation language independent of any
programming language
I Design above the code level

I Isolated from any framework
I Abstract away irrelevant details

I Universally applicable
I Scales from function-level to concurrent and distributed

systems

I Highly expressive because based on basic mathematics
I Rapid progress

I PlusCal has more sca�olding if desired
I Learners choose PlusCal



TLA+ 10,000ft Above

I High-level speci�cation language independent of any
programming language
I Design above the code level

I Isolated from any framework
I Abstract away irrelevant details

I Universally applicable
I Scales from function-level to concurrent and distributed

systems

I Highly expressive because based on basic mathematics
I Rapid progress

I PlusCal has more sca�olding if desired
I Learners choose PlusCal



Catching Bugs Before They Are Implemented

I First release of the Xbox 360

I MSR summer intern spec'ed IBM's memory
coherence protocol

I Writing the spec revealed a subtle bug

I IBM acknowledge the bug only after several weeks

I Chips would have deadlocked after ∼ 4 hours of use

I Xbox Christmas launch would have been missed



Catching Bugs Early

I First release of the Xbox 360

I MSR summer intern spec'ed IBM's memory
coherence protocol

I Writing the spec revealed a subtle bug

I IBM acknowledge the bug only after several weeks

I Chips would have deadlocked after ∼ 4 hours of use

I Xbox Christmas launch would have been missed



Finding Bugs Above The Code Level

Cheng Huang, Principle Software Engineer Manager:

�[...] We had a lock-free data structure im-
plementation which was carefully design & im-
plemented, went through thorough code review,
and was tested under stress for many days. As
a result, we had high con�dence about the im-
plementation. We eventually decided to write a
TLA+ spec, not to verify correctness, but to al-
low team members to learn and practice PlusCal.
So, when the model checker reported a safety vi-
olation, it really caught us by surprise.�

I TLA+ complements program veri�cation such as F*.

https://www.fstar-lang.org/


Finding Bugs Above The Code Level

Cheng Huang, Principle Software Engineer Manager:

�[...] We had a lock-free data structure im-
plementation which was carefully design & im-
plemented, went through thorough code review,
and was tested under stress for many days. As
a result, we had high con�dence about the im-
plementation. We eventually decided to write a
TLA+ spec, not to verify correctness, but to al-
low team members to learn and practice PlusCal.
So, when the model checker reported a safety vi-
olation, it really caught us by surprise.�

I TLA+ complements program veri�cation such as F*.

https://www.fstar-lang.org/


Finding Bugs Above The Code Level

Cheng Huang, Principle Software Engineer Manager:

�[...] We had a lock-free data structure im-
plementation which was carefully design & im-
plemented, went through thorough code review,
and was tested under stress for many days. As
a result, we had high con�dence about the im-
plementation. We eventually decided to write a
TLA+ spec, not to verify correctness, but to al-
low team members to learn and practice PlusCal.
So, when the model checker reported a safety vi-
olation, it really caught us by surprise.�

I TLA+ complements program veri�cation such as F*.

https://www.fstar-lang.org/


Cleaner Architecture

Verhulst [2011], Head OpenComRTOS development
group:

�The [TLA+] abstraction helped a lot in com-
ing to a much cleaner architecture (we witnessed
�rst hand the brain washing done by years of C
programming). One of the results was that the
code size is about 10x less than [in the previous
version]�



Adopting TLA+

I Low cost of adoption (no strategic bet)
I Quick ROI even if lightly integrated into SDLC

I Adopters range from:
I Single �TLA+ champions� (ad-hoc use)
I Teams with dedicated veri�cation engineers (integrated into

SDLC)



Tooling

I Fully integrated development speci�cation environment

I Push-Button Model Checking (TLC)
I TLC answers question if a design is correct (�nite model)

I Proof Assistant (TLAPS)
I TLAPS veri�es reasoning why a design is correct



Roadmap

I Ease-Of-Use

I Scale Model Checker to even larger Models

I Temporal Reasoning for Proof Assistant

I Externally:
I Code Generation (PGo)
I Z3-based Model Checker (Apalache)

https://github.com/Z3Prover/z3


�TLA+ is the most valuable thing that I've learned in
my professional career. It has changed how I work [and]
changed how I think [...]�

Chris Newcombe,

formerly Principal Engineer AWS



Bibliography I

Eric Verhulst. Formal Development of a Network-Centric RTOS:
Software Engineering for Reliable Embedded Systems. Springer,
New York, 2011. ISBN 978-1-4419-9735-7.


	Appendix
	References


