4/ OSGI

;\, Alliance June 10-11, 2008 Berlin, Germany

0OSGi Alliance
Community Event

Distributed OSGi Services with
the Eclipse Communication
Framework

=g

0SGi »'®

Community ¢ ='®
ent)

Jan S. Rellermeyer, ETH Zurich (EEREEIW!
Markus Kuppe, Versant Inc. -

Alliance

ECF: Eclipse Communication
Framework
Communication platform qf Eclipse
» Currently a Technology project
» Will soon move to the Eclipse runtime project

Goals
* Support team and community collaboration

* In combination with the Eclipse IDE
- Shared editing, file transfer, messaging

» As an interprocess communication platform for OSGi
apps

* E.g., service discovery, remote services

http://www.eclipse.org/

ECF adopters and applications

Versant Corp. for Vitness
Cloudsmith Inc. for Buckminster.

Eclipse Platform includes Equinox p2
» uses ECF for all network data transfer
 will probably use ECF discovery in future versions

IRC users use the KOS-MOS IRC bot (based
on the ECF bot framework)

you?

ECF Architecture

Application Container Adapters
Eclipse, RCP, Equinox Server

3

Jingle

Remote

Services Discovery

=
N

XMPP (e.g.)

OSGI/Equinox

- API Provider IAdaptable

\‘/ OSGI

Alliance

OSGi Services

* OSGi services provide ‘[
« Encapsulation at a larger granularity JIEMEDE
* Loose coupling of functionality

« Extensibility Implementation
* Abstraction

- Remote services

» Take this existing boundary to turn an application
Into a distributed application

* Provide an abstraction to design distributed apps

\‘ OSGI

Alliance

OSGi services In the network

* Locate a service
* Implementation for a given interface
 Service discovery
» Common knowledge

- Making use of a service
* Providing service access via ECF API

* “importing” the service into the local service registry
* Providing a local service proxy

\) [|
|‘ [
\

'§ / =
-~ 0SGi
it

Ji\ Alliance

ECF service discovery — Overview

» Query for known/available services
* Synchronous

» Asynchronous: add/remove a service listener and
get notified about service discovery/"undiscovery”

* Query by filter/example (TODO)

« Manual and automatic service announcement

1/

\[\ OSGI

Ny
i1 Alliance

>,
“!
)

i

ECF discovery — Requirements

Protocol and ,space” agnostic

» Does not expose protocol internals

* Not limited to, e.g., the LAN
* Namespace/ID allows flexibility in service addressing
* No strict borders to search

Transparency

e automatic mode*

* Announcement is just a service property in the OSGi context
(Extender model if 3rd party bundle)

 Listener is just a org.osgi.framework.ServicelListener

Intransparency

* ,manual mode”
« Consumer gets hold of discovery services and uses it

\r/ OSGI

Alliance

SLP Provider

SLP protocol
» Multicast discovery
» Server (DA)
Seamless transition
* DA discovery —

Close(r) to OSGi o e

® Service Type

® Altributes

Services e R

* Service properties
« LDAP filters

\) [|
|‘ [
\

/ . *
9 OSGi
!l

|18 Alliance

MDNS Provider

DNS-SD on top of Multicast DNS

» Multicast DNS: p2p name resolution
* DNS-SD: service discovery

ldea: Hosts are authoritative for their resources
One shot and continuous queries
Well-known from Zeroconf or Apple Bonjour

\‘/ OSGI

Alliance

Remote Services

OSGi services which cross address spaces

Same ideas: J,
. Ask for a service (-reference) Interface

- Can trigger service discovery “
» Get the service

» Get a proxy for the service

* Proxy generation can be proactive or reactive

 Use the service
* Method invocations become remote invocations

Transparent API

Service and client remain untouched

Some entity (not the client) states the demand
Proxy Is already present when the client asks

for the service

The service remains agnostic against
distribution, as far as possible

Seamless and flexible transition from
remote services

Interface

ocal to

‘r\{ O S Gl

Alliance

Non-Transparent API

» Client is aware of distribution
* Retrieve an IRemoteService object
» Explicit app-level failure handling

- Explicitly call remote invocations

« Call semantics can differ from local service
calls

* One-shot invocation (non-blocking)

» Asynchronous invocation :m

* E.g., with listener callback
* Futures

\‘ OSGI

Alliance

Generic Provider

DSO model Proxy Proxy Proxy
Proactive, client/server model

* In case of XMPP transport, the server is “hidden”
Connected clients see all service proxies

By default, no type injection

* the assumption is that dependant types referenced
by the service interfaces are known to all peers

» Can be customized to go further
» Can be used with XMPP, JMS, JavaGroups

R-OSGiI Provider

R-OSGi was one of the first projects to enable
remote OSGi services

Is itself “just a service”

Picks up services tagged for remote access
Only the interface is transmitted
Client builds a dynamic proxy
Can be added to any OSGi runtime (R3 + R4)
Protocol and transport-independent

Interface

R-OSGI Proxy Bundles

Synchronized lifecycle with the original bundle
 Also involves the service properties
» Changes are propagated to all proxies

Self-contained units
* Type Injection

* Provides exactly the view on the bundle that a client
has when looking at the service

— InterI@

What about RFC 1197

Work in progress

Will address service discovery and remote
services

More focus on integrating different concepts of
distribution

» Defines metadata for federating heterogeneous
service concepts through OSGi

» Scope includes even languages other than Java

ECF as a reference implementation for 1197

Eclipse ECF Project

* http://www.eclipse.org/ecf

* http://wiki.eclipse.org/ECF

» ECF 2.0 will ship with Eclipse Ganymede
* The work on ECF 2.1 has just started ©

Questions?

