
June 10-11, 2008 Berlin, Germany

Distributed OSGi Services with

the Eclipse Communication

Framework

Jan S. Rellermeyer, ETH Zürich

Markus Kuppe, Versant Inc.

2

• Communication platform of Eclipse

• Currently a Technology project

• Will soon move to the Eclipse runtime project

• Goals

• Support team and community collaboration

• In combination with the Eclipse IDE

• Shared editing, file transfer, messaging

• As an interprocess communication platform for OSGi

apps

• E.g., service discovery, remote services

ECF: Eclipse Communication

Framework

http://www.eclipse.org/

3

ECF adopters and applications

• Versant Corp. for Vitness

• Cloudsmith Inc. for Buckminster.

• Eclipse Platform includes Equinox p2

• uses ECF for all network data transfer

• will probably use ECF discovery in future versions

• IRC users use the KOS-MOS IRC bot (based

on the ECF bot framework)

• you?

4

ECF Architecture

OSGi/Equinox

Datashare

Discovery
Remote
Services

File Transfer

Presence Shared Object

CallShared Editing

XMPP (e.g.)‏

ECF Core

IAdaptable

Container Adapters

Jingle

API Provider

container

21

3

Datashare1

Application
Eclipse, RCP, Equinox Server

5

OSGi Services

• OSGi services provide

• Encapsulation at a larger granularity

• Loose coupling of functionality

• Extensibility

• Abstraction

• Remote services

• Take this existing boundary to turn an application

into a distributed application

• Provide an abstraction to design distributed apps

Interface

Implementation

6

OSGi services in the network

• Locate a service

• Implementation for a given interface

• Service discovery

• Common knowledge

• Making use of a service

• Providing service access via ECF API

• “importing”‏the‏service‏into‏the‏local‏service‏registry

• Providing a local service proxy

7

• Query for known/available services

• Synchronous

• Asynchronous: add/remove a service listener and

get notified about service discovery/”undiscovery”

• Query by filter/example (TODO)

• Manual and automatic service announcement

ECF service discovery – Overview

8

ECF discovery – Requirements

• Protocol‏and‏„space“‏agnostic
• Does not expose protocol internals

• Not limited to, e.g., the LAN
• Namespace/ID allows flexibility in service addressing

• No strict borders to search

• Transparency
• „automatic‏mode“

• Announcement is just a service property in the OSGi context
(Extender model if 3rd party bundle)

• Listener is just a org.osgi.framework.ServiceListener

• Intransparency
• „manual‏mode“

• Consumer gets hold of discovery services and uses it

9

SLP Provider

• SLP protocol

• Multicast discovery

• Server (DA)

• Seamless transition

• DA discovery

• Close(r) to OSGi

Services

• Service properties

• LDAP filters

10

mDNS Provider

• DNS-SD on top of Multicast DNS

• Multicast DNS: p2p name resolution

• DNS-SD: service discovery

• Idea: Hosts are authoritative for their resources

• One shot and continuous queries

• Well-known from Zeroconf or Apple Bonjour

11

Remote Services

• OSGi services which cross address spaces

• Same ideas:

• Ask for a service (-reference)

• Can trigger service discovery

• Get the service

• Get a proxy for the service

• Proxy generation can be proactive or reactive

• Use the service

• Method invocations become remote invocations

Interface

Proxy

12

Transparent API

• Service and client remain untouched

• Some entity (not the client) states the demand

• Proxy is already present when the client asks

for the service

• The service remains agnostic against

distribution, as far as possible

• Seamless and flexible transition from local to

remote services

Interface

Proxy

13

Non-Transparent API

• Client is aware of distribution

• Retrieve an IRemoteService object

• Explicit app-level failure handling

• Explicitly call remote invocations

• Call semantics can differ from local service

calls

• One-shot invocation (non-blocking)

• Asynchronous invocation

• E.g., with listener callback

• Futures

Service

14

Generic Provider

• DSO model

• Proactive, client/server model

• In‏case‏of‏XMPP‏transport,‏the‏server‏is‏“hidden”

• Connected clients see all service proxies

• By default, no type injection

• the assumption is that dependant types referenced

by the service interfaces are known to all peers

• Can be customized to go further

• Can be used with XMPP, JMS, JavaGroups

Proxy Proxy Proxy

15

R-OSGi Provider

• R-OSGi was one of the first projects to enable

remote OSGi services

• Is‏itself‏“just‏a‏service”

• Picks up services tagged for remote access

• Only the interface is transmitted

• Client builds a dynamic proxy

• Can be added to any OSGi runtime (R3 + R4)

• Protocol and transport-independent

Interface

16

R-OSGi Proxy Bundles

• Synchronized lifecycle with the original bundle

• Also involves the service properties

• Changes are propagated to all proxies

• Self-contained units

• Type Injection

• Provides exactly the view on the bundle that a client

has when looking at the service

Interface

17

What about RFC 119?

• Work in progress

• Will address service discovery and remote

services

• More focus on integrating different concepts of

distribution

• Defines metadata for federating heterogeneous

service concepts through OSGi

• Scope includes even languages other than Java

• ECF as a reference implementation for 119?

18

Eclipse ECF Project

• http://www.eclipse.org/ecf

• http://wiki.eclipse.org/ECF

• ECF 2.0 will ship with Eclipse Ganymede

• The work on ECF 2.1 has just started 

Questions?

