
Let TLA+ RiSE

Markus A. Kuppe

August 16, 2018

1 / 47

Outline

TLA+

TLA+

Community
TLA Toolbox, Tools, and TLAPS

Past, Present, Future Projects
Scalability

Vertical Scaling
Horizontal Scaling

Performance
State Space Reduction

Randomization
Symmetry Reduction

Conclusion & Outlook

2 / 47

TLA+

I High-level speci�cation language
I Design above the code level

I Distributed and concurrent systems

I ⇒ Team wrote two RTOS [?]
I (First version �ew on the Rosetta spacecraft)
I �We witnessed �rst hand the brain washing done by years of C

programming.�
I �The TLA+ abstraction helped a lot in coming to a much

cleaner architecture.�
I �One of the results was that the code size is about 10x less

than the previous version.�

3 / 47

TLA+

I Untyped

I Zermelo Fraenkel set theory with Choice

I Linear-time framework: Temporal Logic of Actions (TLA)

MODULE M

VARIABLE v

Init
∆
= . . . De�nes initial states

Next
∆
= v ′ = v + 1 ∧ . . . Constrains allowed transitions

Spec
∆
= Init ∧2[Next]v De�nes system executions

∧ F and optionally weak or strong Fairness

Safety
∆
= 2 . . .

Liveness
∆
= 32 . . .

4 / 47

PlusCal

I Imperative-style pseudo-code but precise

I Atomicity via labels

I Can embed TLA+

I Transpiles to TLA+

I ⇒ Checkable with TLC

I �A gateway drug for programmers� (C. Newcombe)

--algorithm Euclid{
variables x = M, y = N ; {
while (x 6= y){

if (x < y){y := y − x}
else {x := x − y}

}
} Sequential algorithm needs no labels

}

5 / 47

Outline

TLA+

TLA+

Community
TLA Toolbox, Tools, and TLAPS

Past, Present, Future Projects
Scalability

Vertical Scaling
Horizontal Scaling

Performance
State Space Reduction

Randomization
Symmetry Reduction

Conclusion & Outlook

6 / 47

Some Adopters

I Microsoft

I Amazon

I Google

I Intel

I Oracle

I Huawei

I ARM

I Mongo

I Thales

I ...

7 / 47

https://resnet.microsoft.com/video/41348

Community at large

I �tlaplus� Google Group with ∼900 members (almost
self-sustaining)

I Microsoft internal �TLA Plus� group with ∼150 members

I GitHub (∼500 stars) and ∼10 contributors

I Twitter, Reddit, Youtube, ...

8 / 47

PGo

I PlusCal to Go transpiler (Beschastnikh et. al.)

I Very early stages
I Single PlusCal Process

I https://github.com/UBC-NSS/pgo

9 / 47

https://www.cs.ubc.ca/~bestchai
https://github.com/UBC-NSS/pgo

BMCMT: Bounded Model Checking of TLA+ with SMT

I Abstraction-based parameterized TLA+ checker
I Uses Z3

I Challenge: �Rich language. Speci�cations in TLA+ are
considerably more expressive than standard software: TLA+ is
untyped, it allows quanti�cation over sets, comparison of
cardinalities, and comparison and updates of the states of
concurrent components.� [?]

I Recording of TLA+ community event talk:
I TLC faster for small models (especially when bound unknown)

10 / 47

http://forsyte.at/research/apalache/
https://www.youtube.com/watch?v=Xl1--arESl8

Outline

TLA+

TLA+

Community
TLA Toolbox, Tools, and TLAPS

Past, Present, Future Projects
Scalability

Vertical Scaling
Horizontal Scaling

Performance
State Space Reduction

Randomization
Symmetry Reduction

Conclusion & Outlook

11 / 47

TLA Toolbox, Tools, and TLAPS

Figure: TLAPS 12 / 47

TLA Toolbox, Tools, and TLAPS

Figure: Toolbox Model Checking

13 / 47

TLC

I Explicit-state model checker for TLA+

I Disk-based (but you don't want it to go to disk)

I Handles a subclass of TLA+ that seems to be useful in
practice
I E.g. no Temporal Existential Quanti�cation, Composition of

Actions, ...

14 / 47

TLC

I Safety checking corresponds to Breadth-First search over
on-the-�y generated state graph
I Fingerprints ∼ 264 (long)

I Liveness checking corresponds to Depth-First search over
(partial) behavior graph [?]
I Behavior graph is state graph x tableaux
I Technically limited to ∼ 232 vertices

15 / 47

Outline

TLA+

TLA+

Community
TLA Toolbox, Tools, and TLAPS

Past, Present, Future Projects
Scalability

Vertical Scaling
Horizontal Scaling

Performance
State Space Reduction

Randomization
Symmetry Reduction

Conclusion & Outlook

16 / 47

Schematic TLC

SGSG
Procedure
to generate
State Graph

Workers

FPS SQ T

Procedure
to verify all
Properties Φ

Speci�cation Model

Violation?
6|= Φ

success

counter
example

s

no

yes

Transition S.

Parameters
Properties

Seen states

Unseen states

Forest Exec. Trees

17 / 47

Schematic TLC

SGSG

SGSQ TTTT

Prop1Prop2
Procedure
to generate
State Graph

Workers

FPS SQ T

Procedure
to verify all
Properties Φ

Speci�cation Model

Violation?
6|= Φ

success

counter
example

s

no

yes

Transition S.

Parameters
Properties

Seen states

Unseen states

Forest Exec. Trees

18 / 47

Lock-Striping FPS

1. A global lock for FPS to guard concurrent �nd-or-puts does
not scale due to lock contention

2. ⇒ Partition FPS and use one lock per partition

�[...] lock striping seems much

more promising because the size of the stripe set

can be increased as processor counts increase.�

19 / 47

Lock-Striping FPS

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

10
00

20
00

30
00

40
00

50
00

60
00

70
00

Locks

T
hr

ou
gh

pu
t X

26 27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223

1.
1e

+
09

1.
3e

+
09

1.
5e

+
09

1.
7e

+
09

C
ac

he
 M

is
se

s

Throughput X
Cache Misses

Figure: Lock striping exhibits lock coherence
20 / 47

Lock-Free & Shared-Nothing

Minimize worker contention via:

I Lock-Free (CAS) Partitioned/Sharded FPS
I Parallel adaptive sort & parallel eviction to disk
I Raw memory to avoid GC

I Shared-Nothing Trace T per worker

I (Shared-Nothing State Queue SQ)
I Overly optimistic assumptions about average shape/properties

of state graphs!

21 / 47

Lock-Free & Shared-Nothing

0 50 100 150

0
5

10
15

20
25

30
35

N

S
pe

ed
up

 Z

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●
●
●● ●●

● ●
●
●

●
●●

●●●
●●● ●

●
●

●

●
●

●

●●

●●
●

●●
●

●
●

●

●

●● ●●● ●●
●

●
●
●

●●
●

●
●●

●
●

●

●

●●TLC
Spin

Dataset: 2017−02−21_x32 & 2017−02−22_x32

I TLC beats
scalability of SPIN
I (Bakery spec)

I SPIN outperforms
throughput of TLC

22 / 47

Liveness Checking

I Check Liveness: Find and check lassos for ful�lling cycles

I Strongly Connected Components with ?
I DFS, linear time, implemented iteratively

I Liveness checking runs periodically (stops safety)

Figure: CPU usage with periodic liveness checking (32 core machine)

23 / 47

Concurrent SCC

I R.E. Tarjan drafted a concurrent algorithm for us
I Scalability of prototype not promising, abandoned idea for

lower hanging fruits

I �Multi-Core on-the-Fly SCC Decomposition� [?]
I GSoC student Parv Mor implemented prototype this summer
I Results look more promising

I Contention/Coherence Union �nd data-structure?!
I �A Randomized Concurrent Algorithm for Disjoint Set Union�

[?]

24 / 47

Concurrent SCC

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

 8e+10

 9e+10

 1 2 3 4 5 6

R
u
n
ti

m
e
 (

n
s
)

e
x
c
lu

d
in

g
 I
O

1 + log_2(Number of threads)

plots/resistance.1.dat

Vertices: 13.8M, Arcs: 32.1M, SCCs: 3 (max 13.8M), Diameter: 60391

25 / 47

Concurrent SCC

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 7e+10

 8e+10

 1 2 3 4 5 6

R
u
n
ti

m
e
 (

n
s
)

e
x
c
lu

d
in

g
 I
O

1 + log_2(Number of threads)

plots/leader_filters.7.dat

Vertices: 26.3M, Arcs: 91.7M, SCCs: 26.3M (max 1), Diameter: 71

26 / 47

Concurrent SCC

 7e+09

 8e+09

 9e+09

 1e+10

 1.1e+10

 1.2e+10

 1.3e+10

 1.4e+10

 1.5e+10

 1.6e+10

 1.7e+10

 1 2 3 4 5 6

R
u
n
ti

m
e
 (

n
s
)

e
x
c
lu

d
in

g
 I
O

1 + log_2(Number of threads)

plots/cambridge.6.dat

Vertices: 3.4M, Arcs: 9.5M, SCCs: 8413 (max 3.3M), Diameter: 418

27 / 47

Distributed TLC

I Executes TLC on network of
machines

I Distributed Fingerprint Set
(DHT)
I Nearby memory faster

than (local) disks

I Limitations
I Master is bottleneck &

SPOF
I Checkpointing

I No liveness checking
I Di�cult to setup

m

SQ

T

FPS1

w1

wnFPSm

φ

φ

master node worker nodes

DHT nodes

28 / 47

Distributed TLC

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Nodes

S
pe

ed
up

Dataset: Grid5k l10_n06

Figure: Scalability distributed TLC: Cost/State = 210

29 / 47

Distributed TLC

0 50 100 150

0
50

10
0

15
0

Nodes

S
pe

ed
up

●

●●●●
●●●●

●●●
●●

●●
●●●●●●

●

●●
●●
●●

●●
●

●●●●

●●●

●●
●

●●●●●●●

●●
●

●

●

●●

●

●●
●●●●●●●●●

●●

●●
●●●

●●
●●●

●

●●

●●●

●
●
●●●

●

●
●
●●●

●●●●●●●●●●●

●●

●●
●

●

●

●●

●●●

●●

●●●

●

●
●

●●●

●
●

●●●

●

●

●
●

●●●

●●

●●●

●

●●

●●●

●●

●●
●

●

●●

●
●●

●●●●

●
●

●●

●●●●●

●

●●

●●

●

●

●

●
●

●

●●

●●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●●

●
●

●

●

●●

●

●●●●●●●●●●●

●

●

●
●

●

●

●●

●

●●

●
●

●●

●
●

●

●

●

●

●

●
●

●●

●

●

Dataset: Grid5k l12_n06

Figure: Scalability distributed TLC: Cost/State = 212

30 / 47

Distributed TLC

0 50 100 150

0
50

10
0

15
0

Nodes

S
pe

ed
up

●●●●●●
●●●●

●

●
●●●

●●●●●

●

●●●●
●●

●●

●●
●●

●●
●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●
●

●●

●●

●●

●
●

●●
●●

●●

●●●●

●●●●

●●

●●

●●

●●

●●

●●

●
●

●●

●
●

●●

●
●

●●

●●

●●

●
●

●●

●
●

●
●

●●

●●

●●

●●

●●●

●●

●
●

●

●●

●
●

●
●

●●

Dataset: Grid5k l14_n06

Figure: Scalability distributed TLC: Cost/State = 214

31 / 47

Outline

TLA+

TLA+

Community
TLA Toolbox, Tools, and TLAPS

Past, Present, Future Projects
Scalability

Vertical Scaling
Horizontal Scaling

Performance
State Space Reduction

Randomization
Symmetry Reduction

Conclusion & Outlook

32 / 47

Cloud TLC

I Push-Button model checking in the cloud
I Support for Azure and AWS

I Just compute APIs for portability reasons

I Hide away idiosyncrasies of TLC and cloud platform

I Support for single node TLC and Distributed TLC

I Can be started from Toolbox and CLI within seconds
I Cold-start in the range of minutes

I Easily check several models concurrently
I Instance count is elastic with regards to resource demand

I Instances dispose automatically after inactivity

33 / 47

https://jclouds.apache.org/reference/providers/#compute-apis

Outline

TLA+

TLA+

Community
TLA Toolbox, Tools, and TLAPS

Past, Present, Future Projects
Scalability

Vertical Scaling
Horizontal Scaling

Performance
State Space Reduction

Randomization
Symmetry Reduction

Conclusion & Outlook

34 / 47

Performance Next-State

I No intermediate language, no compiler, just AST interpreter

I Simple left-to-right evaluation of expressions
I Recursion but no tail call optimization in Java

I ⇒ Evaluation of next-state at least two orders magnitude
slower compared to SPIN

/home/markus/dump/syncthing/work/LabIntroTalk/diagrams/moduleoverwrites.png

Figure: Throughput (ops/s) normal evaluation (red) vs. module overwrite
(blue)

(see online)

35 / 47

http://jmh.morethan.io/?sources=https://raw.githubusercontent.com/tlaplus/tlaplus/master/tlatools/test-benchmark/tlc2/tool/ModuleOverwrites-1531220029-80dc6de2b.json

No Partial Evaluation

MODULE Frob

VARIABLES x , y
Init

∆
= x = 0 ∧ y = 0

expensiveOp(n)
∆
= CHOOSE e ∈ SUBSET (1 . . n) : TRUE

NextOuch
∆
= ∧ x ′ ∈ 1 . . 100
∧ y ′ = expensiveOp(23)

NextYeah
∆
= ∧ y ′ = expensiveOp(23)
∧ x ′ ∈ 1 . . 100

36 / 47

TLA+ Compiler

I �The Tru�e language development framework allows running
programming languages e�ciently on GraalVM.�1

I �The guest language developer gets a high-performance
language implementation, but does not need to be a compiler
expert.� [?]
I Speedup of evaluation at runtime over special-purpose

compilers:
I Ruby 3.8x
I R 5x

I Translate AST emitted by SANY to Tru�e AST

I ⇒ Partial Evaluation for TLA+

1GraalVM is a just-in-time compiler for OpenJDK.
37 / 47

http://www.graalvm.org/docs/why-graal/
http://www.graalvm.org/docs/why-graal/

Outline

TLA+

TLA+

Community
TLA Toolbox, Tools, and TLAPS

Past, Present, Future Projects
Scalability

Vertical Scaling
Horizontal Scaling

Performance
State Space Reduction

Randomization
Symmetry Reduction

Conclusion & Outlook

38 / 47

Find Inductive Invariant candidates with TLC

Goal: Proof invariance of I with TLAPS
Find inductive invariant Inv that satis�es:

1. Init ⇒ Inv , which means that Inv is true in all initial states.

2. Inv ⇒ I , which means that I is true in every state on which
Inv is true.

3. Inv ∧ Next ⇒ Inv ′, which means if Inv is true on any state s,
then it is true on any state reachable from s by a Next step.

3.1 Let TLC check:
CheckInductiveSpec

∆
= Inv ∧2[Next]vars

[?]

39 / 47

Find Inductive Invariant candidates with TLC

MODULE Foo

EXTENDS Naturals

VARIABLE x

TypeOK
∆
= x ∈ SUBSET (1 . . 500) or x ∈ Nat, ...

H
∆
= . . . "interesting part"

Inv
∆
= TypeOK ∧ H

CheckInductiveSpec
∆
= Inv ∧2[Next]v Make Inv the initial predicate.

40 / 47

New Standard Module Randomization

MODULE Randomization

RandomSubset(k, S) equals a randomly chosen subset of S containing k elements,
where 0 < k < Cardinality(S).

RandomSubset(k, S)
∆
= CHOOSE T ∈ SUBSET S : Cardinality(T) = T

RandomSetOfSubsets(k, n, S) equals a pseudo-randomly chosen set of subsets
of S � that is, a randomly chosen subset of SUBSET S. Thus, each element T
of this set is a subset of S. Each such T is chosen so that each element of S
has a probability n / Cardinality(S) of being in T. Thus, the average number of
elements in each chosen subset T is n. The set RandomSetOfSubsets(k, n, S)
is obtained by making k such choices of T. Because this can produce duplicate
choices, the number of elements T in this set may be less than k.

RandomSetOfSubsets(k, n, S)
∆
=

CHOOSE T ∈ SUBSET SUBSET S : Cardinality(T) ≤ k

41 / 47

New Standard Module Randomization

MODULE Foo

EXTENDS Integers, Randomization

VARIABLE x

TypeOK
∆
= x ∈ RandomSubset(4711, SUBSET (1 . . 500))

H
∆
= . . .

Inv
∆
= TypeOK ∧ H

CheckInductiveSpec
∆
= Inv ∧2[. . .]...

42 / 47

Symmetry Reduction

I Chooses a representative of equivalence classes (orbit) of states

I Constructive Orbit Problem - in general - is NP-hard [see ?]

MODULE Symmetry

EXTENDS FiniteSets

VARIABLE x

CONSTANT S

ASSUME (Cardinality(S) ≥ 9)
Spec

∆
= (x ∈ S) ∧2[x ′ ∈ S]〈x〉 Without symmetry: 9 states, without: 1

I For each state enumerate |vars| ∗ |A|! ∗ |B|! where A and B are two
symmetry sets

I Not supported by liveness checking (TLC prints warning)

43 / 47

Liveness under Symmetry

I TLA+ actions (labeled arcs) hard to account for in quotient
graph
I Approach resulted in incompleteness of liveness checking

I ⇒ Abandoned idea

I Maybe: Use quotient graph to �nd SCCs, re-generate actual
SCC for all elements of symmetry set
I Ine�cient if SCCs are large (which they tend to be)

44 / 47

Partial Order Reduction for TLA+?

I (Static) POR - similar to SPIN's implementation - explored by
S. Merz
I ⇒ Didn't work too well
I SPIN �ne-grained atomicity similar to programming language
I TLA+ due to abstractions coarse-grained atomicity

I Not looked at PlusCal (�ne-grained atomicity)

I Dynamic POR might be di�erent (open question)

45 / 47

Conclusion & Outlook
I Continue to focus on scalability of parallel and distributed TLC

I Concurrent SCC search with lock-free union �nd
I Scalability StateQueue

I �TLA+ compiler� to speed-up evaluation of next-state relation
I Shift Toolbox maintenance to community

I Machine Learning combined with Cloud TLC
I Optimize scalability and performance => Less manual tuning

of TLC
I Predict size of state graph/time to check => User de�nes

�when�

I Start new with TLC-Next instead of continue with existing
TLC
I Feature cost and technical debt to drag on

I OTS data-structures not (yet?) ready for multicore
�revolution�

I Scalability & Performance too much of an art
46 / 47

Q&A

Q&A

47 / 47

Bibliography I

48 / 47

	TLAmath text inlined[fg]math text inlinedfgmath text inlined[fg]math text inlinedfg+
	TLAmath text inlined[fg]math text inlinedfgmath text inlined[fg]math text inlinedfg+
	Community
	TLA Toolbox, Tools, and TLAPS

	Past, Present, Future Projects
	Scalability
	Cloud TLC
	Performance
	State Space Reduction

	Conclusion & Outlook
	Appendix

