Let TLA⁺ RiSE

Markus A. Kuppe

August 16, 2018

Outline

TLA⁺ TLA⁺

Community TLA Toolbox, Tools, and TLAPS

Past, Present, Future Projects

Scalability Vertical Scaling Horizontal Scaling Performance State Space Reduction Randomization Symmetry Reduction

Conclusion & Outlook

TLA^+

- High-level specification language
 - Design above the code level
- Distributed and concurrent systems
- ▶ \Rightarrow Team wrote *two* RTOS [?]
 - (First version flew on the Rosetta spacecraft)
 - "We witnessed first hand the brain washing done by years of C programming."
 - "The TLA⁺ abstraction helped a lot in coming to a much cleaner architecture."
 - "One of the results was that the code size is about 10x less than the previous version."

TLA^+

Untyped

- Zermelo Fraenkel set theory with Choice
- Linear-time framework: Temporal Logic of Actions (TLA)

 VARIABLE v

 Init
 \triangleq ...

 Defines initial states

 Next
 \triangleq $v' = v + 1 \land \ldots$

 Constrains allowed transitions

 Spec
 =

 Init $\land \Box$ $[Next]_v$

 Defines system executions

 $\land F$ and optionally weak or strong Fairness

 Safety
 \triangleq

 Liveness
 \triangleq

PlusCal

- Imperative-style pseudo-code but precise
- Atomicity via labels
- Can embed TLA⁺
- Transpiles to TLA⁺
 - \blacktriangleright \Rightarrow Checkable with TLC

"A gateway drug for programmers" (C. Newcombe)

```
--algorithm Euclid {

variables x = M, y = N; {

while (x \neq y){

if (x < y){y := y - x}

else {x := x - y}

}

Sequential algorithm needs no labels
```

Outline

TLA⁺ TLA⁺ Community TLA Toolbox, Tools, and TLAF

Past, Present, Future Projects

Scalability Vertical Scaling Horizontal Scaling Performance State Space Reduction Randomization Symmetry Reduction

Conclusion & Outlook

Some Adopters

- Microsoft
- Amazon
- ► Google
- Intel
- ► Oracle
- ► Huawei
- ► ARM
- ► Mongo
- ► Thales

Community at large

- "tlaplus" Google Group with ~900 members (almost self-sustaining)
- \blacktriangleright Microsoft internal "TLA Plus" group with ${\sim}150$ members
- GitHub (\sim 500 stars) and \sim 10 contributors
- ► Twitter, Reddit, Youtube, ...

- PlusCal to Go transpiler (Beschastnikh et. al.)
- Very early stages
 - Single PlusCal Process
- https://github.com/UBC-NSS/pgo

BMCMT: Bounded Model Checking of TLA⁺ with SMT

Abstraction-based parameterized TLA+ checker

- Uses Z3
- Challenge: "Rich language. Specifications in TLA⁺ are considerably more expressive than standard software: TLA⁺ is untyped, it allows quantification over sets, comparison of cardinalities, and comparison and updates of the states of concurrent components." [?]
- Recording of TLA+ community event talk:
 - TLC faster for small models (especially when bound unknown)

Outline

TLA⁺ TLA⁺ Community TLA Toolbox, Tools, and TLAPS

Past, Present, Future Projects

Scalability Vertical Scaling Horizontal Scaling Performance State Space Reduction Randomization Symmetry Reduction

Conclusion & Outlook

TLA Toolbox, Tools, and TLAPS

TLA Toolbox, Tools, and TLAPS

	TL	A+ Toolbox			
e Edit Window TLC Model Checker TLA Proof Manager Help					
Ranoi.tla 🕱 🗖 🗖	🖶 Model_1 🐹		- 0	🍓 TLC Errors 😫	-
/home/markus/src/TLA/examples/specifications/tower_of_hanoi/Hanoi.tla	Model Overview Advar	nced Options Model Ch	ecking Results	Model 1	
TLA Module	A Model Overvie	and Annual and Antonia	a 8		
1 MODULE Hanoi	a model overvie	ew <u>I warning detecte</u>	<u>v</u>	Invariant NotSolved is	violated.
2 EXTENDS Naturals, Bits, FiniteSets, TLC	0 🖑 =				
4 (************************************				Error-Trace Explo	oration
5 (* TRUE iff i is a power of two	Model description			Enter expressions to be evaluated at state of the trace	
/ PowerOfTwo(1) == 1 & (1-1) = 0					
g (************************************					Add
10 (* A set of all powers of two up to n	What is the behavior spec? Initial predicate and next-state relation		What is the model?		Edit
			Specify the values of declared constants.		
12 SetUTPOWERUTIWO(n) == {x \in 1(2"n-1): POWERUTIWO(x) 13			D + 2		Remov
14 (************************************			0.00		Evolor
15 (* Copied from TLA+'s Bags standard library. The sum o	Init:		N <- 4		capior
10 (* DUMAIN T. 17 (************************************	Next:				Restor
18 Sum(f) == LET DSum(S \in SUBSET DOMAIN f) ==	Temporal formula		Advanced parts of the model: Additional State constraints Action cor		
19 LET elt == CHOOSE e \in S : TRUE				Error-Trace	
20 IN IF S = {} THEN 0	Spec		plate constraints, includin con		
21 ELSE T[elt] + DSum[S \ {e			How to run?	Name	Value
22 IN DSUB[DORKIN 1]			TLC Parameters	 Initial predica 	State (num = 1)
24 (************************************	No Behavior Spec		Number of worker threads:	 I towers 	<<7, 0, 0, 0>>
25 (* D is number of disks and N number of towers				 A <next 89,<="" li="" line=""> </next>	State (num = 2)
26 (************************************	What to check?		Fraction of physical memory allocated t	towers	<<6. 1. 0. 0>>
27 CONSTANT D, N 28				 Next line 89 	State (num = 3)
29 (************************************					and 1 3 0mm
30 (* Towers of Hanoi with N towers	ø Deadlock		- Description of the state of the state	· a towers	<<4, 1, 2, 0 <i>2</i> 2
31 (************************************	I Invariante		Recover from checkpoint	 Next line 89, 	State (num = 4)
32 VARIABLES TOWERS	E invariance		Checkpoint ID:	 towers 	<<0, 1, 2, 4>>
33 Vals (<cowers>></cowers>	Formulas true in ev	ery reachable state.	checkpoint ib.	 Next line 89, 	State (num = 5)
35 (************************************	NotSolved	Add		 towers 	<<0, 1, 0, 6>>
36 (* The total sum of all towers must amount to the disk	Inv			 Next line 89, 	State (num = 6)
37 (************************************		Edit		towers	cc0 0 0 7>>
30 Inv 300(cowers) - 2 0 * 1		Domous	Run in distributed mode off :	Select line in	Freez Trage
40 (* Towers are naturals in the interval (0, 2°D) *)	a	renove		show its value	here
41 TypeOK == /\ \A i \in DOMAIN towers : /\ towers[i] \in	Properties	Properties		010- 100 48100	
An	[] at the second				

Figure: Toolbox Model Checking

- Explicit-state model checker for TLA⁺
- Disk-based (but you don't want it to go to disk)
- Handles a subclass of TLA⁺ that seems to be useful in practice
 - E.g. no Temporal Existential Quantification, Composition of Actions, ...

TLC

 Safety checking corresponds to Breadth-First search over on-the-fly generated state graph

► Fingerprints ~ 2⁶⁴ (long)

- Liveness checking corresponds to Depth-First search over (partial) behavior graph [?]
 - Behavior graph is state graph x tableaux
 - Technically limited to $\sim 2^{32}$ vertices

Outline

TLA⁺ TLA⁺ Community TLA Toolbox, Tools, and TLAPS

Past, Present, Future Projects Scalability

Vertical Scaling Horizontal Scaling Performance State Space Reduction Randomization Symmetry Reduction

Conclusion & Outlook

Schematic TLC

Schematic TLC

- 1. A global lock for *FPS* to guard **concurrent** find-or-puts does not scale due to *lock contention*
- 2. \Rightarrow Partition *FPS* and use one lock per partition

"[...] lock striping seems much more promising because the size of the stripe set can be increased as processor counts increase."

Lock-Striping FPS

Figure: Lock striping exhibits lock coherence

Lock-Free & Shared-Nothing

Minimize worker contention via:

- Lock-Free (CAS) Partitioned/Sharded FPS
 - Parallel adaptive sort & parallel eviction to disk
 - Raw memory to avoid GC
- Shared-Nothing Trace T per worker
- (Shared-Nothing State Queue SQ)
 - Overly optimistic assumptions about average shape/properties of state graphs!

Lock-Free & Shared-Nothing

Dataset: 2017-02-21_x32 & 2017-02-22_x32

Liveness Checking

- Check Liveness: Find and check lassos for fulfilling cycles
- Strongly Connected Components with ?
 - DFS, linear time, implemented iteratively
- Liveness checking runs periodically (stops safety)

Figure: CPU usage with periodic liveness checking (32 core machine)

R.E. Tarjan drafted a concurrent algorithm for us

- Scalability of prototype not promising, abandoned idea for lower hanging fruits
- "Multi-Core on-the-Fly SCC Decomposition" [?]
 - GSoC student Parv Mor implemented prototype this summer
 - Results look more promising
 - Contention/Coherence Union find data-structure?!
 - "A Randomized Concurrent Algorithm for Disjoint Set Union"
 [?]

plots/resistance.1.dat

Vertices: 13.8M, Arcs: 32.1M, SCCs: 3 (max 13.8M), Diameter: 60391

Vertices: 26.3M, Arcs: 91.7M, SCCs: 26.3M (max 1), Diameter: 71

plots/cambridge.6.dat

Vertices: 3.4M, Arcs: 9.5M, SCCs: 8413 (max 3.3M), Diameter: 418

Distributed TLC

- Executes TLC on network of machines
- Distributed Fingerprint Set (DHT)
 - Nearby memory faster than (local) disks
- Limitations
 - Master is bottleneck & SPOF
 - Checkpointing
 - No liveness checking
 - Difficult to setup

$\mathsf{Distributed}\ \mathsf{TLC}$

Dataset: Grid5k I10_n06

Figure: Scalability distributed TLC: $Cost/State = 2^{10}$

$\mathsf{Distributed}\ \mathsf{TLC}$

Dataset: Grid5k I12_n06

Figure: Scalability distributed TLC: $Cost/State = 2^{12}$

$\mathsf{Distributed}\ \mathsf{TLC}$

Dataset: Grid5k I14_n06

Figure: Scalability distributed TLC: $Cost/State = 2^{14}$

Outline

TLA⁺ TLA⁺ Community TLA Toolbox, Tools, and TLAP

Past, Present, Future Projects

Scalability Vertical Scaling Horizontal Scaling Performance State Space Reduction Randomization Symmetry Reduction

Conclusion & Outlook

Cloud TLC

Push-Button model checking in the cloud

- Support for Azure and AWS
 - Just compute APIs for portability reasons
- Hide away idiosyncrasies of TLC and cloud platform
- Support for single node TLC and Distributed TLC
- Can be started from Toolbox and CLI within seconds
 - Cold-start in the range of minutes
- Easily check several models concurrently
 - Instance count is elastic with regards to resource demand
- Instances dispose automatically after inactivity

Outline

TLA⁺ TLA⁺ Community TLA Toolbox, Tools, and TLAPS

Past, Present, Future Projects

Scalability Vertical Scaling Horizontal Scaling

Performance

State Space Reduction Randomization Symmetry Reduction

Conclusion & Outlook

Performance Next-State

- ▶ No intermediate language, no compiler, just AST interpreter
- Simple left-to-right evaluation of expressions
 - Recursion but no tail call optimization in Java
- ► ⇒ Evaluation of next-state at least two orders magnitude slower compared to SPIN

/home/markus/dump/syncthing/work/LabInt

Figure: Throughput (ops/s) normal evaluation (red) vs. module overwrite (blue)

(see online)

No Partial Evaluation

MODULE FrobVARIABLES x, yInit
$$\triangleq x = 0 \land y = 0$$
expensiveOp(n) \triangleq CHOOSE $e \in$ SUBSET $(1 \dots n)$: TRUENextOuch $\triangleq \land x' \in 1 \dots 100$ $\land y' = expensiveOp(23)$ NextYeah $\triangleq \land y' = expensiveOp(23)$ $\land x' \in 1 \dots 100$

TLA⁺ Compiler

- "The Truffle language development framework allows running programming languages efficiently on GraalVM."¹
- "The guest language developer gets a high-performance language implementation, but does not need to be a compiler expert." [?]
 - Speedup of evaluation at runtime over special-purpose compilers:
 - Ruby 3.8x
 - R 5x
- Translate AST emitted by SANY to Truffle AST
- \blacktriangleright \Rightarrow Partial Evaluation for TLA⁺

¹GraalVM is a just-in-time compiler for OpenJDK.

Outline

TLA⁺ TLA⁺ Community TLA Toolbox, Tools, and TLAPS

Past, Present, Future Projects

Scalability Vertical Scaling Horizontal Scaling Performance

State Space Reduction

Randomization Symmetry Reduction

Conclusion & Outlook

Find Inductive Invariant candidates with TLC

Goal: Proof invariance of *I* with TLAPS Find inductive invariant *Inv* that satisfies:

- 1. Init \Rightarrow Inv, which means that Inv is true in all initial states.
- 2. $Inv \Rightarrow I$, which means that I is true in every state on which Inv is true.
- 3. $Inv \wedge Next \Rightarrow Inv'$, which means if Inv is true on any state s, then it is true on any state reachable from s by a Next step.
 - 3.1 Let TLC check: $CheckInductiveSpec \triangleq Inv \land \Box[Next]_{vars}$

Find Inductive Invariant candidates with TLC

New Standard Module Randomization

MODULE Randomization

RandomSubset(k, S) equals a randomly chosen subset of S containing k elements, where 0 < k < Cardinality(S).

 $RandomSubset(k, S) \triangleq CHOOSE T \in SUBSET S : Cardinality(T) = T$

RandomSetOfSubsets(k, n, S) equals a pseudo-randomly chosen set of subsets of S – that is, a randomly chosen subset of SUBSET S. Thus, each element T of this set is a subset of S. Each such T is chosen so that each element of S has a probability n / Cardinality(S) of being in T. Thus, the average number of elements in each chosen subset T is n. The set RandomSetOfSubsets(k, n, S) is obtained by making k such choices of T. Because this can produce duplicate choices, the number of elements T in this set may be less than k.

 $\begin{array}{l} RandomSetOfSubsets(k, n, S) \triangleq \\ \hline CHOOSE \ T \in SUBSET \ SUBSET \ S : Cardinality(T) \leq k \end{array}$

New Standard Module Randomization

MODULE FooEXTENDS Integers, RandomizationVARIABLE xTypeOK $\triangleq x \in RandomSubset(4711, SUBSET (1 ... 500))<math>H \triangleq \dots$ $Inv \triangleq TypeOK \land H$ CheckInductiveSpec $\triangleq Inv \land \Box[\dots]_{\dots}$

Symmetry Reduction

Chooses a representative of equivalence classes (orbit) of states

Constructive Orbit Problem - in general - is NP-hard [see ?]

MODULE Symmetry -

EXTENDS FiniteSets VARIABLE x CONSTANT S ASSUME (Cardinality(S) \geq 9) Spec $\triangleq (x \in S) \land \Box[x' \in S]_{\langle x \rangle}$ Without symmetry: 9 states, without: 1

- For each state enumerate |vars| * |A|! * |B|! where A and B are two symmetry sets
- Not supported by liveness checking (TLC prints warning)

Liveness under Symmetry

 TLA⁺ actions (labeled arcs) hard to account for in quotient graph

Approach resulted in incompleteness of liveness checking

- ► ⇒ Abandoned idea
- Maybe: Use quotient graph to find SCCs, re-generate actual SCC for all elements of symmetry set
 - Inefficient if SCCs are large (which they tend to be)

Partial Order Reduction for TLA⁺?

- (Static) POR similar to SPIN's implementation explored by S. Merz
 - ► ⇒ Didn't work too well
 - SPIN fine-grained atomicity similar to programming language
 - TLA⁺ due to abstractions coarse-grained atomicity
 - Not looked at PlusCal (fine-grained atomicity)
- Dynamic POR might be different (open question)

Conclusion & Outlook

Continue to focus on scalability of parallel and distributed TLC

- Concurrent SCC search with lock-free union find
- Scalability StateQueue
- "TLA+ compiler" to speed-up evaluation of next-state relation
- Shift Toolbox maintenance to community
- Machine Learning combined with Cloud TLC
 - Optimize scalability and performance => Less manual tuning of TLC
 - Predict size of state graph/time to check => User defines "when"
- Start new with TLC-Next instead of continue with existing TLC

Feature cost and technical debt to drag on

- OTS data-structures not (yet?) ready for multicore "revolution"
- Scalability & Performance too much of an art

Q&A

Bibliography I