
Distributed TLC

Markus A. Kuppe

TLA+ Community Event, ABZ 2014 Toulouse, June 3, 2014

1/33



Outline
Introduction

Distributed TLC
When and why?

Ad-hoc distributed TLC
Use case
Demo
Common problems
Tuning
Conclusion

Cloud distributed TLC
Use case
Demo
Conclusion

Summary and Outlook
Summary
Outlook

2/33



Outline
Introduction

Distributed TLC
When and why?

Ad-hoc distributed TLC
Use case
Demo
Common problems
Tuning
Conclusion

Cloud distributed TLC
Use case
Demo
Conclusion

Summary and Outlook
Summary
Outlook

3/33



Highlevel TLC

FPS Fingerprint Set
(contains a hash of all already explored states)

SQ State Queue
(contains all unexplored states)

WORKER Set of worker nodes
(nodes/cores doing heavy calculations)

φ Safety properties
(as de�ned by the model)

4/33



Highlevel TLC

FPS Fingerprint Set
(contains a hash of all already explored states)

SQ State Queue
(contains all unexplored states)

WORKER Set of worker nodes
(nodes/cores doing heavy calculations)

φ Safety properties
(as de�ned by the model)

4/33



Highlevel TLC

FPS Fingerprint Set
(contains a hash of all already explored states)

SQ State Queue
(contains all unexplored states)

WORKER Set of worker nodes
(nodes/cores doing heavy calculations)

φ Safety properties
(as de�ned by the model)

4/33



Highlevel TLC

FPS Fingerprint Set
(contains a hash of all already explored states)

SQ State Queue
(contains all unexplored states)

WORKER Set of worker nodes
(nodes/cores doing heavy calculations)

φ Safety properties
(as de�ned by the model)

4/33



Non-distributed TLC

m

FPS

SQ

c1 φ

c... φ

cn φ

model checker cores

Figure : Non-distributed TLC
5/33



Distributed Computation

m

FPS

SQ

w1

w...

wn

φ

φ

φ

master node worker nodes

Figure : Compute nodes
6/33



Distributed Computation & Storage

mSQ

FPS1

w1

wn FPSm

master node worker nodes

Figure : Compute and storage nodes
7/33



When and why?

Compute Use as many cores as possible
(to distribute heavy next-state computation)

Compute & Storage Additionally use as much memory as available
(to speed up FPS lookup)

8/33



Scalability

I Scales (almost) linearly

I => Hash collisions

9/33



Limitations

I No liveness checking

I No coverage

I No distributed calculation of init states

I No (strict) breadth-�rst search

10/33



Fault tolerance

I 1...n workers (w)

I 1...(m-1) �ngerprint sets
(FPS)

I Compensates neither
loosing SQ nor Trace

mSQ

w1

w...

wn

FPS1

FPSm

Figure : Broken setup

11/33



Outline
Introduction

Distributed TLC
When and why?

Ad-hoc distributed TLC
Use case
Demo
Common problems
Tuning
Conclusion

Cloud distributed TLC
Use case
Demo
Conclusion

Summary and Outlook
Summary
Outlook

12/33



Use case

I Experiments block/slow down your desktop

13/33



Demo

Demo (Ad-hoc network)

14/33



Demo notes (slide not part of �nal pdf)

1. Create and setup a model for distributed TLC

2. Start model checker (...waiting for workers)

3. Switch to Windows VMs

4. Open IE on Toolbox webserver

5. (Install Java7 via Webstart)

6. Launch Worker in IE in Windows VM

7. Switch to another VM & start more workers

15/33



Demo notes (slide not part of �nal pdf)

1. Start another model

2. Start Distributed FPSet node in VM1

2.1 Set number of distributed FPSets

3. Start Worker node in VM2

16/33



Demo notes (slide not part of �nal pdf)

1. Start daemon style Worker node in VM �rst

2. Start small model that completes in less than a minute

3. Start small model that completes ...

4. ...

5. Mention to use Java8 or OOM due to PermGen
http://stackoverflow.com/a/835269

17/33

http://stackoverflow.com/a/835269


Common problems

I Broken name resolution

I Blocked by �rewalls

I Restrictive system security

18/33



Fingerprint Set implementations

I Least Signi�cant Bit (LSB)

I halves available FPS memory
I old default

I Most Signi�cant Bit (MSB)

I exploits all available memory
I new default

I O� Heap

I fastest & most e�cient
I Not universally available

19/33



Fingerprint Set implementations

I Least Signi�cant Bit (LSB)

I halves available FPS memory
I old default

I Most Signi�cant Bit (MSB)

I exploits all available memory
I new default

I O� Heap

I fastest & most e�cient
I Not universally available

19/33



Fingerprint Set implementations

I Least Signi�cant Bit (LSB)

I halves available FPS memory
I old default

I Most Signi�cant Bit (MSB)

I exploits all available memory
I new default

I O� Heap

I fastest & most e�cient
I Not universally available

19/33



Distributed Fingerprint Sets

I Use distributed FPS

I Performance degrades as soon as TLC goes to disk

I (Solid state) disks order of magnitude slower compared to
RAM

I Even remote memory still faster

20/33



Minor

I Checkpoints

I StateQueue bu�er

I Worker cache

I BlockSelector

I ...

21/33



Conclusion

I Only simple if it works

I Too many screws

22/33



Outline
Introduction

Distributed TLC
When and why?

Ad-hoc distributed TLC
Use case
Demo
Common problems
Tuning
Conclusion

Cloud distributed TLC
Use case
Demo
Conclusion

Summary and Outlook
Summary
Outlook

23/33



Use case

I Experiments running many hours to days

I Personal machine not always on

24/33



Demo

Demo (in the cloud)

25/33



Demo notes (slide not part of �nal pdf)

I Set AWS credentials as environment variables

I Launch toolbox

I Create and setup model to start on AWS

I Set drop down to �aws-ec2�
I Set email

I Mention cloud-speci�c tuning hard-wired into the Toolbox

I Launch TLC in the cloud

I Show status in browser (have a backup screenshot available)

I �Wait� for email response (have a backup email result ready!)

I Open E-Mail response (result) in Toolbox

26/33



Conclusion

I Don't have to worry about systems idiosyncrasies, but you
literally pay the price for it

27/33



Outline
Introduction

Distributed TLC
When and why?

Ad-hoc distributed TLC
Use case
Demo
Common problems
Tuning
Conclusion

Cloud distributed TLC
Use case
Demo
Conclusion

Summary and Outlook
Summary
Outlook

28/33



Summary

I Exploits remote compute power and storage

I Scales

I Ad-hoc deployment can be tricky

I Cloud deployment despite costs way forward

29/33



Outlook

I Multi-node cloud deployments

I More pre-sets for cloud instance types

I Support other cloud providers

I �Auto Scaling� based on actual machine load

I Larger (128 bit) �ngerprints?

30/33



Q&A

Thank you for your attention

31/33



Acknowledgment

I Microsoft Research & INRIA Joint Lab

I Amazon AWS

I Experiments presented in this paper were carried out using the
Grid'5000 experimental testbed, being developed under the
INRIA ALADDIN development action with support from
CNRS, RENATER and several Universities as well as other
funding bodies - https://www.grid5000.fr

32/33

https://www.grid5000.fr


References

I eMail: mailto:tla-workshop-2014@lemmster.de

I Slides: https://www.lemmster.de/uploads/
DistributedTLC_MarkusAKuppe.pdf

33/33

mailto:tla-workshop-2014@lemmster.de
https://www.lemmster.de/uploads/DistributedTLC_MarkusAKuppe.pdf
https://www.lemmster.de/uploads/DistributedTLC_MarkusAKuppe.pdf

	Introduction
	Distributed TLC
	When and why?

	Ad-hoc distributed TLC
	Use case
	Demo 
	Common problems
	Tuning 
	Conclusion

	Cloud distributed TLC 
	Use case
	Demo
	Conclusion

	Summary and Outlook
	Summary
	Outlook


