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Highlevel TLC

FPS Fingerprint Set
(contains a hash of all already explored states)

SQ State Queue
(contains all unexplored states)

WORKER Set of worker nodes
(nodes/cores doing heavy calculations)

φ Safety properties
(as de�ned by the model)
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Non-distributed TLC
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Figure : Non-distributed TLC
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Distributed Computation
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Figure : Compute nodes
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Distributed Computation & Storage
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Figure : Compute and storage nodes
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When and why?

Compute Use as many cores as possible
(to distribute heavy next-state computation)

Compute & Storage Additionally use as much memory as available
(to speed up FPS lookup)
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Scalability

I Scales (almost) linearly

I => Hash collisions
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Limitations

I No liveness checking

I No coverage

I No distributed calculation of init states

I No (strict) breadth-�rst search
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Fault tolerance

I 1...n workers (w)

I 1...(m-1) �ngerprint sets
(FPS)

I Compensates neither
loosing SQ nor Trace
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Figure : Broken setup
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Use case

I Experiments block/slow down your desktop

13/33



Demo

Demo (Ad-hoc network)
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Demo notes (slide not part of �nal pdf)

1. Create and setup a model for distributed TLC

2. Start model checker (...waiting for workers)

3. Switch to Windows VMs

4. Open IE on Toolbox webserver

5. (Install Java7 via Webstart)

6. Launch Worker in IE in Windows VM

7. Switch to another VM & start more workers
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Demo notes (slide not part of �nal pdf)

1. Start another model

2. Start Distributed FPSet node in VM1

2.1 Set number of distributed FPSets

3. Start Worker node in VM2
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Demo notes (slide not part of �nal pdf)

1. Start daemon style Worker node in VM �rst

2. Start small model that completes in less than a minute

3. Start small model that completes ...

4. ...

5. Mention to use Java8 or OOM due to PermGen
http://stackoverflow.com/a/835269
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Common problems

I Broken name resolution

I Blocked by �rewalls

I Restrictive system security
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Fingerprint Set implementations

I Least Signi�cant Bit (LSB)

I halves available FPS memory
I old default

I Most Signi�cant Bit (MSB)

I exploits all available memory
I new default

I O� Heap

I fastest & most e�cient
I Not universally available
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Distributed Fingerprint Sets

I Use distributed FPS

I Performance degrades as soon as TLC goes to disk

I (Solid state) disks order of magnitude slower compared to
RAM

I Even remote memory still faster
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Minor

I Checkpoints

I StateQueue bu�er

I Worker cache

I BlockSelector

I ...
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Conclusion

I Only simple if it works

I Too many screws
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Use case

I Experiments running many hours to days

I Personal machine not always on
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Demo

Demo (in the cloud)
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Demo notes (slide not part of �nal pdf)

I Set AWS credentials as environment variables

I Launch toolbox

I Create and setup model to start on AWS

I Set drop down to �aws-ec2�
I Set email

I Mention cloud-speci�c tuning hard-wired into the Toolbox

I Launch TLC in the cloud

I Show status in browser (have a backup screenshot available)

I �Wait� for email response (have a backup email result ready!)

I Open E-Mail response (result) in Toolbox

26/33



Conclusion

I Don't have to worry about systems idiosyncrasies, but you
literally pay the price for it
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Summary

I Exploits remote compute power and storage

I Scales

I Ad-hoc deployment can be tricky

I Cloud deployment despite costs way forward
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Outlook

I Multi-node cloud deployments

I More pre-sets for cloud instance types

I Support other cloud providers

I �Auto Scaling� based on actual machine load

I Larger (128 bit) �ngerprints?
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Q&A

Thank you for your attention
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